cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158498 a(n) = (1/2)*(n^3 - 6*n^2 + 13*n - 6).

Original entry on oeis.org

1, 2, 3, 7, 17, 36, 67, 113, 177, 262, 371, 507, 673, 872, 1107, 1381, 1697, 2058, 2467, 2927, 3441, 4012, 4643, 5337, 6097, 6926, 7827, 8803, 9857, 10992, 12211, 13517, 14913, 16402, 17987, 19671, 21457, 23348, 25347, 27457, 29681
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A158498:= func< n | ((n-2)^3+n+2)/2 >;
    [A158498(n): n in [1..50]]; // G. C. Greubel, Mar 18 2025
    
  • Mathematica
    Table[((n-2)^3+n+2)/2, {n,50}] (* or *) LinearRecurrence[{4,-6,4,-1}, {1,2,3,7}, 50] (* G. C. Greubel, Feb 19 2017; Mar 18 2025 *)
  • PARI
    my(x='x+O('x^50)); Vec(x*(1 - 2*x + x^2 + 3*x^3) / (1-x)^4) \\ G. C. Greubel, Feb 19 2017
    
  • PARI
    a(n)=(n^3 - 6*n^2 + 13*n - 6)/2 \\ Charles R Greathouse IV, Feb 19 2017
    
  • SageMath
    def A158498(n): return ((n-2)^3 +n+2)//2
    print([A158498(n) for n in range(1,51)]) # G. C. Greubel, Mar 18 2025

Formula

a(n) = (1/2)*(n^3 - 6*n^2 + 13*n - 6).
G.f.: x*(1 - 2*x + x^2 + 3*x^3) / (1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - G. C. Greubel, Feb 19 2017
From G. C. Greubel, Mar 18 2025: (Start)
a(n) = (1/2)*(A000578(n-2) + A000027(n+2)).
E.g.f.: 3 - (1/2)*(6 - 8*x + 3*x^2 - x^3)*exp(x). (End)