cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158523 Moebius transform of negated primes in factorization of n.

Original entry on oeis.org

1, -3, -4, 6, -6, 12, -8, -12, 12, 18, -12, -24, -14, 24, 24, 24, -18, -36, -20, -36, 32, 36, -24, 48, 30, 42, -36, -48, -30, -72, -32, -48, 48, 54, 48, 72, -38, 60, 56, 72, -42, -96, -44, -72, -72, 72, -48, -96, 56, -90, 72, -84, -54, 108, 72, 96, 80, 90, -60, 144, -62, 96, -96, 96, 84, -144, -68, -108, 96, -144
Offset: 1

Views

Author

Jaroslav Krizek, Mar 20 2009

Keywords

Examples

			a(72) = a(2^3*3^2) = (-1)^3*(2+1)*2^(3-1) * (-1)^2*(3+1)*3^(2-1) = (-12)*12 = -144.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (-1)^e*(p + 1)*p^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 05 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (-1)^f[i,2]*(f[i,1]+1)*f[i,1]^(f[i,2]-1));} \\ Amiram Eldar, Jan 05 2023

Formula

Multiplicative with a(p^e) = (-1)^e*(p+1)*p^(e-1), e>0. a(1)=1.
a(n) = mu(n) * A061019(n) = A008683(n) * A061019(n) = A061020(n) * A007427(n) = A061020(n) * A007428(n) * A000012(n) = A007427(n) * A000012(n) * A061019(n) = A007428(n) * A000005(n) * A061019(n), where operation * denotes Dirichlet convolution. Dirichlet convolution of functions b(n), c(n) is function a(n) = b(n) * c(n) = Sum_{d|n} b(d)*c(n/d).
Inverse Moebius transform gives A061019.
a(n) = (-1)^A001222(n)*A001615(n).
Apparently the Dirichlet inverse of A048250. - R. J. Mathar, Jul 15 2010
Dirichlet g.f.: zeta(2*s-2)/(zeta(s-1)*zeta(s)). - Amiram Eldar, Jan 05 2023

Extensions

More terms from Antti Karttunen, Nov 26 2024