cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A158543 a(n) = 144*n^2 - 12.

Original entry on oeis.org

132, 564, 1284, 2292, 3588, 5172, 7044, 9204, 11652, 14388, 17412, 20724, 24324, 28212, 32388, 36852, 41604, 46644, 51972, 57588, 63492, 69684, 76164, 82932, 89988, 97332, 104964, 112884, 121092, 129588, 138372, 147444, 156804, 166452, 176388, 186612, 197124, 207924
Offset: 1

Views

Author

Vincenzo Librandi, Mar 21 2009

Keywords

Comments

The identity (24*n^2 - 1)^2 - (144*n^2 - 12)*(2*n)^2 = 1 can be written as A158544(n)^2 - a(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[132, 564, 1284]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 14 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {132, 564, 1284}, 50] (* Vincenzo Librandi, Feb 14 2012 *)
    144*Range[40]^2-12 (* Harvey P. Dale, Oct 20 2012 *)
  • PARI
    for(n=1, 40, print1(144*n^2 - 12", ")); \\ Vincenzo Librandi, Feb 14 2012

Formula

From Vincenzo Librandi, Feb 14 2012: (Start)
G.f.: -x*(132 + 168*x - 12*x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 06 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(2*sqrt(3)))*Pi/(2*sqrt(3)))/24.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(2*sqrt(3)))*Pi/(2*sqrt(3)) - 1)/24. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: 12*(exp(x)*(12*x^2 + 12*x - 1) + 1).
a(n) = 12*A158463(n). (End)

Extensions

Comment rewritten by R. J. Mathar, Oct 16 2009

A158636 a(n) = 576*n^2 - 24.

Original entry on oeis.org

552, 2280, 5160, 9192, 14376, 20712, 28200, 36840, 46632, 57576, 69672, 82920, 97320, 112872, 129576, 147432, 166440, 186600, 207912, 230376, 253992, 278760, 304680, 331752, 359976, 389352, 419880, 451560, 484392, 518376, 553512, 589800, 627240, 665832, 705576
Offset: 1

Views

Author

Vincenzo Librandi, Mar 23 2009

Keywords

Comments

The identity (48*n^2 - 1)^2 - (576*n^2 - 24)*(2*n)^2 = 1 can be written as A065532(n)^2 - a(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[552, 2280, 5160]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 17 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {552, 2280, 5160}, 50] (* Vincenzo Librandi, Feb 17 2012 *)
  • PARI
    for(n=1, 40, print1(576*n^2 - 24", ")); \\ Vincenzo Librandi, Feb 17 2012

Formula

G.f.: 24*x*(-23 - 26*x + x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 19 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(2*sqrt(6)))*Pi/(2*sqrt(6)))/48.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(2*sqrt(6)))*Pi/(2*sqrt(6)) - 1)/48. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: 24*(exp(x)*(24*x^2 + 24*x - 1) + 1).
a(n) = 24*A158544(n). (End)

Extensions

Comment rephrased and redundant formula replaced by R. J. Mathar, Oct 19 2009
Showing 1-2 of 2 results.