cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158546 a(n) = 144*n^2 + 12.

Original entry on oeis.org

12, 156, 588, 1308, 2316, 3612, 5196, 7068, 9228, 11676, 14412, 17436, 20748, 24348, 28236, 32412, 36876, 41628, 46668, 51996, 57612, 63516, 69708, 76188, 82956, 90012, 97356, 104988, 112908, 121116, 129612, 138396, 147468, 156828, 166476, 176412, 186636, 197148
Offset: 0

Views

Author

Vincenzo Librandi, Mar 21 2009

Keywords

Comments

The identity (24*n^2 + 1)^2 - (144*n^2 + 12)*(2*n)^2 = 1 can be written as A158547(n)^2 - a(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[12, 156, 588]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 14 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {12, 156, 588}, 50] (* Vincenzo Librandi, Feb 14 2012 *)
    144*Range[0,40]^2+12 (* Harvey P. Dale, Jul 14 2025 *)
  • PARI
    for(n=0, 40, print1(144*n^2 + 12", ")); \\ Vincenzo Librandi, Feb 14 2012

Formula

G.f.: 12*(1 + 10*x + 13*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 06 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/(2*sqrt(3)))*Pi/(2*sqrt(3)) + 1)/24.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/(2*sqrt(3)))*Pi/(2*sqrt(3)) + 1)/24. (End)
From Elmo R. Oliveira, Jan 15 2025: (Start)
E.g.f.: 12*exp(x)*(1 + 12*x + 12*x^2).
a(n) = 12*A158480(n). (End)

Extensions

Comment rewritten, a(0) added by R. J. Mathar, Oct 16 2009