cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A158559 a(n) = 225*n^2 - 15.

Original entry on oeis.org

210, 885, 2010, 3585, 5610, 8085, 11010, 14385, 18210, 22485, 27210, 32385, 38010, 44085, 50610, 57585, 65010, 72885, 81210, 89985, 99210, 108885, 119010, 129585, 140610, 152085, 164010, 176385, 189210, 202485, 216210, 230385, 245010, 260085, 275610, 291585, 308010
Offset: 1

Views

Author

Vincenzo Librandi, Mar 21 2009

Keywords

Comments

The identity (30*n^2 - 1)^2 - (225*n^2 - 15) * (2*n)^2 = 1 can be written as A158560(n)^2 - a(n) * A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[210, 885, 2010]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 14 2012
    
  • Mathematica
    15(15Range[40]^2-1) (* or *) LinearRecurrence[{3,-3,1},{210,885,2010},40] (* Harvey P. Dale, Jan 24 2012 *)
  • PARI
    for(n=1, 40, print1(225*n^2 - 15", ")); \\ Vincenzo Librandi, Feb 05 2012

Formula

G.f.: 15*x*(-14 - 17*x + x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 09 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/sqrt(15))*Pi/sqrt(15))/30.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/sqrt(15))*Pi/sqrt(15) - 1)/30. (End)

Extensions

Comment rewritten by R. J. Mathar, Oct 16 2009

A158669 a(n) = 900*n^2 - 30.

Original entry on oeis.org

870, 3570, 8070, 14370, 22470, 32370, 44070, 57570, 72870, 89970, 108870, 129570, 152070, 176370, 202470, 230370, 260070, 291570, 324870, 359970, 396870, 435570, 476070, 518370, 562470, 608370, 656070, 705570, 756870, 809970, 864870, 921570, 980070, 1040370, 1102470
Offset: 1

Views

Author

Vincenzo Librandi, Mar 24 2009

Keywords

Comments

The identity (60*n^2 - 1)^2 - (900*n^2 - 30)*(2*n)^2 = 1 can be written as A158670(n)^2 - a(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[870, 3570, 8070]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 18 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {870, 3570, 8070}, 50] (* Vincenzo Librandi, Feb 18 2012 *)
  • PARI
    for(n=1, 40, print1(900*n^2 - 30", ")); \\ Vincenzo Librandi, Feb 18 2012

Formula

G.f.: 30*x*(-29 - 32*x + x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 20 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/sqrt(30))*Pi/sqrt(30))/60.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/sqrt(30))*Pi/sqrt(30) - 1)/60. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: 30*(exp(x)*(30*x^2 + 30*x - 1) + 1).
a(n) = 30*A158560(n). (End)

Extensions

Comment rephrased and redundant formula replaced by R. J. Mathar, Oct 19 2009

A283867 Numbers n such that 30*n^2 - 1 and 30*n^2 + 1 are (twin) primes.

Original entry on oeis.org

1, 3, 10, 14, 18, 38, 62, 73, 116, 118, 143, 183, 221, 232, 242, 330, 333, 413, 430, 455, 470, 496, 507, 533, 538, 556, 606, 622, 645, 675, 687, 701, 720, 777, 792, 819, 846, 879, 881, 895, 913, 1000, 1019, 1030, 1092, 1155, 1214, 1238, 1253, 1261, 1313, 1337, 1350, 1407, 1418, 1429, 1431
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 17 2017

Keywords

Examples

			3 is in this sequence because 30*3^2 - 1 = 269 and 30*3^2 + 1 = 271 are twin primes.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1500] | IsPrime(30*n^2-1) and IsPrime(30*n^2+1)];
    
  • Mathematica
    Select[Range@ 1431, PrimeQ[30*#^2 + 1] && PrimeQ[30*#^2 - 1] &] (* Indranil Ghosh, Mar 17 2017 *)
  • PARI
    is(n)=isprime(30*n^2-1) && isprime(30*n^2+1) \\ Charles R Greathouse IV, Mar 17 2017
    
  • Python
    from sympy import isprime
    [i for i in range(1, 1501) if isprime(30*i**2 - 1) and isprime(30*i**2 + 1)] # Indranil Ghosh, Mar 17 2017

Formula

a(n) >> n log^2 n. - Charles R Greathouse IV, Mar 17 2017
Showing 1-3 of 3 results.