A158563 a(n) = 32*n^2 - 1.
31, 127, 287, 511, 799, 1151, 1567, 2047, 2591, 3199, 3871, 4607, 5407, 6271, 7199, 8191, 9247, 10367, 11551, 12799, 14111, 15487, 16927, 18431, 19999, 21631, 23327, 25087, 26911, 28799, 30751, 32767, 34847, 36991, 39199, 41471, 43807, 46207, 48671, 51199, 53791
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[32*n^2-1: n in [1..40]]; // Vincenzo Librandi, Sep 11 2013
-
Mathematica
32 Range[40]^2 - 1 (* Harvey P. Dale, Mar 04 2011 *) CoefficientList[Series[(- 31 - 34 x + x^2) / (x - 1)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Sep 11 2013 *)
-
PARI
a(n)=32*n^2-1 \\ Charles R Greathouse IV, Jun 17 2017
Formula
G.f.: x*(-31-34*x+x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A244082(n) - 1. - Omar E. Pol, Apr 21 2021
From Amiram Eldar, Mar 09 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(4*sqrt(2)))*Pi/(4*sqrt(2)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(4*sqrt(2)))*Pi/(4*sqrt(2)) - 1)/2. (End)
E.g.f.: 1 + exp(x)*(32*x^2 + 32*x - 1). - Elmo R. Oliveira, Jan 25 2025
Comments