A158594 Numbers which yield a prime whenever a 3 is prefixed, appended or inserted.
1, 7, 11, 17, 31, 37, 73, 121, 271, 331, 343, 359, 361, 373, 533, 637, 673, 733, 793, 889, 943, 1033, 1183, 2297, 3013, 3119, 3223, 3353, 3403, 3461, 3757, 3827, 3893, 3923, 4313, 4543, 4963, 5323, 5381, 5419, 6073, 6353, 8653, 9103, 9887, 10423, 14257
Offset: 1
Examples
109 is not a term: 3109, 1039, 1093 are primes, but 1309 = 7 * 11 * 17. 121 is a term: 3121 (3 prefixed), 1213 (3 appended), 1321 and 1231 (3 inserted) are primes.
References
- Marcus Du Sautoy, The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics, HarperCollins. 2004
- Bryan Bunch, Kingdom of Infinite Number: A Field Guide, W.H. Freeman & Company, 2001
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..500
Crossrefs
Programs
-
Maple
Lton := proc(L) local i ; add(op(i,L)*10^(i-1),i=1..nops(L) ) ; end: isA158594 := proc(n) local dgs,i,p; dgs := convert(n,base,10) ; p := [3,op(dgs)] ; if not isprime(Lton(p)) then RETURN(false) ; fi; p := [op(dgs),3] ; if not isprime(Lton(p)) then RETURN(false) ; fi; for i from 1 to nops(dgs)-1 do p := [op(1..i,dgs),3,op(i+1..nops(dgs),dgs)] ; if not isprime(Lton(p)) then RETURN(false) ; fi; od: RETURN(true) ; end: for n from 1 to 25000 do if isA158594(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Mar 26 2009
-
PARI
isok(n)={i=#digits(n);m=1;k=0;while(kJinyuan Wang, Feb 02 2019
Extensions
Corrected and extended by Chris K. Caldwell and R. J. Mathar, Mar 26 2009
Comments