cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158604 a(n) = 42*n^2 + 1.

Original entry on oeis.org

1, 43, 169, 379, 673, 1051, 1513, 2059, 2689, 3403, 4201, 5083, 6049, 7099, 8233, 9451, 10753, 12139, 13609, 15163, 16801, 18523, 20329, 22219, 24193, 26251, 28393, 30619, 32929, 35323, 37801, 40363, 43009, 45739, 48553, 51451, 54433, 57499, 60649, 63883, 67201
Offset: 0

Views

Author

Vincenzo Librandi, Mar 22 2009

Keywords

Comments

The identity (42*n^2 + 1)^2 - (441*n^2 + 21)*(2*n)^2 = 1 can be written as a(n)^2 - A158603(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[1, 43, 169]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 16 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {1, 43, 169}, 50] (* Vincenzo Librandi, Feb 16 2012 *)
  • PARI
    for(n=0, 40, print1(42*n^2 + 1", ")); \\ Vincenzo Librandi, Feb 16 2012

Formula

G.f.: -(1 + 40*x + 43*x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 16 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/sqrt(42))*Pi/sqrt(42) + 1)/2.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/sqrt(42))*Pi/sqrt(42) + 1)/2. (End)

Extensions

Comment rewritten, formula replaced by R. J. Mathar, Oct 28 2009