cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A158603 a(n) = 441*n^2 + 21.

Original entry on oeis.org

21, 462, 1785, 3990, 7077, 11046, 15897, 21630, 28245, 35742, 44121, 53382, 63525, 74550, 86457, 99246, 112917, 127470, 142905, 159222, 176421, 194502, 213465, 233310, 254037, 275646, 298137, 321510, 345765, 370902, 396921, 423822, 451605, 480270, 509817, 540246
Offset: 0

Views

Author

Vincenzo Librandi, Mar 22 2009

Keywords

Comments

The identity (42*n^2 + 1)^2 - (441*n^2 + 21)*(2*n)^2 = 1 can be written as A158604(n)^2 - a(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[21, 462, 1785]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 16 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {21, 462, 1785}, 50] (* Vincenzo Librandi, Feb 16 2012 *)
  • PARI
    for(n=0, 40, print1(441*n^2 + 21", ")); \\ Vincenzo Librandi, Feb 16 2012

Formula

G.f.: -21*(1 + 19*x + 22*x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 16 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/sqrt(21))*Pi/sqrt(21) + 1)/42.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/sqrt(21))*Pi/sqrt(21) + 1)/42. (End)
E.g.f.: 21*exp(x)*(1 + 21*x + 21*x^2). - Elmo R. Oliveira, Jan 15 2025

Extensions

Comment rewritten, formula replaced by R. J. Mathar, Oct 28 2009

A243813 Table read by antidiagonals: T(n,k) is the curvature (truncated to integer) of a circle in a variation of nested Pappus chains (see Comments for details).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 2, 9, 1, 1, 1, 1, 3, 13, 1, 1, 1, 1, 2, 5, 19, 1, 1, 1, 1, 1, 3, 7, 25, 1, 1, 1, 1, 1, 2, 4, 9, 33, 1, 1, 1, 1, 1, 1, 2, 5, 11, 41, 1, 1, 1, 1, 1, 1, 2, 3, 6, 14, 51, 1, 1, 1, 1, 1, 1, 1, 2, 4, 7, 17, 61, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 9, 21
Offset: 0

Views

Author

Kival Ngaokrajang, Jun 11 2014

Keywords

Comments

Refer to the construction rule used in A243618. For this case, the curvature is defined by (-1/k, 1/(k-1), 1), the circle radius will diverge to infinity (zero curvature). The integral curvatures appearing as periodic, i.e., 2, 6, 6, 10, 30, 42, 28, 12, ..., = A083482(k-1). The integral curvatures seem to align as some sequence, e.g., 3, 7, 13, 21, 31, 43, ..., = A002061(k) and 9, 25, 49, ..., = A016754(k-1). See illustration.

Examples

			Table begins:
  n/k  2   3   4   5   6   7  ...
   0   1   1   1   1   1   1  ...
   1   1   1   1   1   1   1  ...
   2   3   1   1   1   1   1  ...
   3   5   2   1   1   1   1  ...
   4   9   3   2   1   1   1  ...
   5  13   5   3   2   1   1  ...
   6  19   7   4   2   2   1  ...
   7  25   9   5   3   2   2  ...
   8  33  11   6   4   3   2  ...
   9  41  14   7   5   3   2  ...
  10  51  17   9   6   4   3  ...
  11  61  21  11   7   5   3  ...
  12  73  25  13   8   5   4  ...
  ...
		

Crossrefs

Cf. Column 1 = A080827(n), column 2 = A056827(n) + 1.
Cf. Integral curvature in column 1..6: [A058331, A227776, A056107, A212656, A158558, A158604].
Showing 1-2 of 2 results.