A158625 Lower limit of backward value of 5^n.
5, 2, 1, 3, 0, 2, 3, 3, 0, 4, 3, 1, 1, 3, 1, 1, 2, 4, 2, 1, 0, 3, 1, 3, 3, 0, 0, 0, 2, 3, 1, 4, 1, 0, 2, 1, 0, 3, 4, 3, 0, 2, 1, 2, 2, 1, 1, 4, 4, 3, 4, 0, 2, 0, 4, 0, 2, 2, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 3, 3, 2, 0, 1, 1, 4, 4, 2, 0, 1, 4, 2, 4, 1, 2, 0, 4
Offset: 1
Examples
5^3 = 125 so the backward value is 0.521, 5^10 = 9765625, so backward value is 0.5265679. The lower limit of all values is a constant, which appears to be 0.521302330431131124210313300023141021034302... From _N. J. A. Sloane_, May 11 2018: (Start) To describe this another way: write down the decimal expansion of powers of 5: 1 5 25 125 625 3125 ... keep going forever. Write them backwards: 1 5 52 526 5213 ... After a while the beginning digits are all the same. That's the sequence. (End)
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..3000
Programs
-
Magma
D:=87; e:=6; for d in [2..D-1] do t:=Modexp(5,e,10^(d+1)); if t div 10^d ge 5 then e+:=2^(d-2); end if; end for; t:=Modexp(5,e,10^D); IntegerToSequence(t,10); // Jon E. Schoenfield, Feb 05 2018
-
Python
# lower limit of backward sequence of 5^n a,i=5,0; x=a while i < 100: i+=1; print(x, end=',') x=(-a//pow(5,i)*pow(3,i))%5; a+=x*pow(10,i) # Cezary Glowacz, Jul 29 2024
Formula
a(n) >= 0 and is the minimum satisfying (Sum_{i=1..n} a(i)*10^(i-1)) == 0 (mod 5^n), for n >= 2. - Cezary Glowacz, Jul 24 2024
Comments