cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A158686 a(n) = 64*n^2 + 1.

Original entry on oeis.org

1, 65, 257, 577, 1025, 1601, 2305, 3137, 4097, 5185, 6401, 7745, 9217, 10817, 12545, 14401, 16385, 18497, 20737, 23105, 25601, 28225, 30977, 33857, 36865, 40001, 43265, 46657, 50177, 53825, 57601, 61505, 65537, 69697, 73985, 78401, 82945, 87617, 92417, 97345, 102401
Offset: 0

Views

Author

Vincenzo Librandi, Mar 24 2009

Keywords

Comments

The identity (64*n^2 + 1)^2 - (1024*n^2 + 32)*(2*n)^2 = 1 can be written as a(n)^2 - A158685(n)*(A005843(n))^2 = 1.

Crossrefs

Programs

  • Magma
    [64*n^2+1: n in [0..40]]; // Vincenzo Librandi, Sep 11 2013
    
  • Mathematica
    64 Range[0, 40]^2 + 1 (* or *) LinearRecurrence[{3, -3, 1}, {1, 65, 257}, 40] (* Harvey P. Dale, Jan 24 2012 *)
    CoefficientList[Series[- (1 + 62 x + 65 x^2) / (x - 1)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Sep 11 2013 *)
  • PARI
    a(n)=64*n^2+1 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: -(1+62*x+65*x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 21 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/8)*Pi/8 + 1)/2.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/8)*Pi/8 + 1)/2. (End)
From Elmo R. Oliveira, Jan 17 2025: (Start)
E.g.f.: exp(x)*(1 + 64*x + 64*x^2).
a(n) = A108211(2*n) for n > 0. (End)

Extensions

Comment rewritten, a(0) added and formula replaced by R. J. Mathar, Oct 22 2009
Showing 1-1 of 1 results.