cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158782 Irregular triangle of coefficients of p(n, x) = (1 - x^2)^(n+1)*Sum_{j >= 0} (4*j+ 1)^n*x^(2*j), read by rows.

Original entry on oeis.org

1, 1, 0, 3, 1, 0, 22, 0, 9, 1, 0, 121, 0, 235, 0, 27, 1, 0, 620, 0, 3446, 0, 1996, 0, 81, 1, 0, 3119, 0, 40314, 0, 63854, 0, 15349, 0, 243, 1, 0, 15618, 0, 422087, 0, 1434812, 0, 963327, 0, 112546, 0, 729, 1, 0, 78117, 0, 4157997, 0, 26672209, 0, 37898739, 0, 12960063, 0, 806047, 0, 2187
Offset: 0

Views

Author

Roger L. Bagula, Mar 26 2009

Keywords

Comments

Define the series q(x, n) = (1 - x^2)^(n+1)*Sum_{j >= 1} (4*k+1)^n*x^(2*k) then the sum r(x, n) = p(x, n) + q(x, n) is symmetrical and gives r(x, n) =(x+1)^(2*n+1)*A060187(x, n).

Examples

			The irregular triangle begins as:
  1;
  1, 0,     3;
  1, 0,    22, 0,      9;
  1, 0,   121, 0,    235, 0,      27;
  1, 0,   620, 0,   3446, 0,    1996, 0,     81;
  1, 0,  3119, 0,  40314, 0,   63854, 0,  15349, 0,    243;
  1, 0, 15618, 0, 422087, 0, 1434812, 0, 963327, 0, 112546, 0, 729;
		

Crossrefs

Cf. A060187.

Programs

  • Mathematica
    p[n_, x_]= (1-x^2)^(n+1)*Sum[(4*k+1)^n*x^(2*k), {k,0,Infinity}];
    Table[FullSimplify[p[n,x]], {n,0,12}];
    Table[CoefficientList[p[n,x], x], {n, 0, 12}]//Flatten (* modified by G. C. Greubel, Mar 08 2022 *)
  • Sage
    def p(n,x): return (1-x^2)^(n+1)*sum( (4*j+1)^n*x^(2*j) for j in (0..n+1) )
    def T(n,k): return ( p(n,x) ).series(x, 2*n+1).list()[k]
    flatten([[T(n,k) for k in (0..2*n)] for n in (0..12)]) # G. C. Greubel, Mar 08 2022

Formula

T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (1 - x^2)^(n+1)*Sum_{j >= 0} (4*j+ 1)^n*x^(2*j).

Extensions

Edited by G. C. Greubel, Mar 08 2022