A158782 Irregular triangle of coefficients of p(n, x) = (1 - x^2)^(n+1)*Sum_{j >= 0} (4*j+ 1)^n*x^(2*j), read by rows.
1, 1, 0, 3, 1, 0, 22, 0, 9, 1, 0, 121, 0, 235, 0, 27, 1, 0, 620, 0, 3446, 0, 1996, 0, 81, 1, 0, 3119, 0, 40314, 0, 63854, 0, 15349, 0, 243, 1, 0, 15618, 0, 422087, 0, 1434812, 0, 963327, 0, 112546, 0, 729, 1, 0, 78117, 0, 4157997, 0, 26672209, 0, 37898739, 0, 12960063, 0, 806047, 0, 2187
Offset: 0
Examples
The irregular triangle begins as: 1; 1, 0, 3; 1, 0, 22, 0, 9; 1, 0, 121, 0, 235, 0, 27; 1, 0, 620, 0, 3446, 0, 1996, 0, 81; 1, 0, 3119, 0, 40314, 0, 63854, 0, 15349, 0, 243; 1, 0, 15618, 0, 422087, 0, 1434812, 0, 963327, 0, 112546, 0, 729;
Links
- G. C. Greubel, Rows n = 0..50 of the irregular triangle, flattened
Crossrefs
Cf. A060187.
Programs
-
Mathematica
p[n_, x_]= (1-x^2)^(n+1)*Sum[(4*k+1)^n*x^(2*k), {k,0,Infinity}]; Table[FullSimplify[p[n,x]], {n,0,12}]; Table[CoefficientList[p[n,x], x], {n, 0, 12}]//Flatten (* modified by G. C. Greubel, Mar 08 2022 *)
-
Sage
def p(n,x): return (1-x^2)^(n+1)*sum( (4*j+1)^n*x^(2*j) for j in (0..n+1) ) def T(n,k): return ( p(n,x) ).series(x, 2*n+1).list()[k] flatten([[T(n,k) for k in (0..2*n)] for n in (0..12)]) # G. C. Greubel, Mar 08 2022
Formula
T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (1 - x^2)^(n+1)*Sum_{j >= 0} (4*j+ 1)^n*x^(2*j).
Extensions
Edited by G. C. Greubel, Mar 08 2022
Comments