A158785 Expansion of e.g.f.: exp(t*x)/(1 - x^2/t - t^3*x^3).
1, 0, 1, 2, 0, 0, 1, 0, 6, 0, 0, 7, 24, 0, 0, 12, 0, 0, 25, 0, 120, 0, 0, 260, 0, 0, 61, 720, 0, 0, 360, 0, 0, 1470, 0, 0, 841, 0, 5040, 0, 0, 15960, 0, 0, 5082, 0, 0, 5251, 40320, 0, 0, 20160, 0, 0, 122640, 0, 0, 134456, 0, 0, 20497, 0, 362880, 0, 0, 1512000
Offset: 0
Examples
Irregular triangle begins as: 1; 0, 1; 2, 0, 0, 1; 0, 6, 0, 0, 7; 24, 0, 0, 12, 0, 0, 25; 0, 120, 0, 0, 260, 0, 0, 61; 720, 0, 0, 360, 0, 0, 1470, 0, 0, 841; 0, 5040, 0, 0, 15960, 0, 0, 5082, 0, 0, 5251; 40320, 0, 0, 20160, 0, 0, 122640, 0, 0, 134456, 0, 0, 20497;
Links
- G. C. Greubel, Rows n = 0..50 of the irregular triangle, flattened
Programs
-
Mathematica
Table[CoefficientList[Expand[t^Floor[n/2]*n!*SeriesCoefficient[Series[Exp[t*x]/(1 - x^2/t - t^3*x^3), {x, 0, 20}], n]], t], {n, 0, 10}]//Flatten
-
Sage
f(x, t) = exp(t*x)/(1 - x^2/t - t^3*x^3) def A158785(n, k): return ( factorial(n)*t^(n//2)*( f(x, t) ).series(x, 20).list()[n] ).series(t, 2*n+1).list()[k] flatten([[A158785(n, k) for k in (0..n+(n//2))] for n in (0..10)]) # G. C. Greubel, Dec 05 2021
Formula
T(n, k) = coefficients of e.g.f.: t^floor(n/2)*exp(t*x)/(1 - x^2/t - t^3*x^3).
From G. C. Greubel, Dec 05 2021: (Start)
T(n, floor(n/2) + n) = A330044(n).
T(n, 0) = A005359(n).
T(n, 1) = A005212(n). (End)
Extensions
Edited by G. C. Greubel, Dec 05 2021