A158786 Irregular triangle T(n, k) = A000032(n-2*k+1) if (n-2*k) mod 2 = 0, otherwise 25*A000032(n-2*k), read by rows.
1, 25, 4, 1, 100, 25, 11, 4, 1, 275, 100, 25, 29, 11, 4, 1, 725, 275, 100, 25, 76, 29, 11, 4, 1, 1900, 725, 275, 100, 25, 199, 76, 29, 11, 4, 1, 4975, 1900, 725, 275, 100, 25, 521, 199, 76, 29, 11, 4, 1, 13025, 4975, 1900, 725, 275, 100, 25, 1364, 521, 199, 76, 29, 11, 4, 1, 34100, 13025, 4975, 1900, 725, 275, 100, 25
Offset: 2
Examples
Irregular triangle begins as: 1; 25; 4, 1; 100, 25; 11, 4, 1; 275, 100, 25; 29, 11, 4, 1; 725, 275, 100, 25; 76, 29, 11, 4, 1; 1900, 725, 275, 100, 25; 199, 76, 29, 11, 4, 1; 4975, 1900, 725, 275, 100, 25;
References
- H. S. M. Coxeter, Regular Polytopes, 3rd ed., Dover, NY, 1973, pp. 159-162.
Links
- G. C. Greubel, Rows n = 0..50 of the irregular triangle, flattened
Programs
-
Mathematica
(* First program *) e[n_, 0]:= Sqrt[5]*(GoldenRatio^(n) + GoldenRatio^(-n)); e[n_, k_]:= If[k>n-1, 0, (e[n-1, k]*e[n, k-1] +1)/e[n-1, k-1]]; T[n_,k_]:= 5*Rationalize[N[e[n, k]]]; Table[T[n, k], {n, 2, 16}, {k, Mod[n, 2] +1, n-1,2}]//Flatten (* Second program *) f[n_]:= f[n]= If[EvenQ[n], LucasL[n-1], 25*LucasL[n-2]]; T[n_, k_]:= f[n-2*k]; Table[T[n, k], {n, 2, 16}, {k, 0, (n-2)/2}]//Flatten (* G. C. Greubel, Dec 06 2021 *)
-
Sage
def A158786(n,k): return lucas_number2(n-2*k-1,1,-1) if ((n-2*k)%2==0) else 25*lucas_number2(n-2*k-2,1,-1) flatten([[A158786(n,k) for k in (0..((n-2)//2))] for n in (2..16)]) # G. C. Greubel, Dec 06 2021
Formula
T(n, k) = 5*e(n, k), where e(n,k) = (e(n-1, k)*e(n, k-1) + 1)/e(n-1, k-1), and e(n, 0) = sqrt(5)*(GoldenRatio^(n) + GoldenRatio^(-n)).
From G. C. Greubel, Dec 06 2021: (Start)
Extensions
Edited by G. C. Greubel, Dec 06 2021