A158793 Triangle read by rows: product of A130595 and A092392 considered as infinite lower triangular arrays.
1, 1, 1, 3, 1, 1, 7, 4, 1, 1, 19, 9, 5, 1, 1, 51, 26, 11, 6, 1, 1, 141, 70, 34, 13, 7, 1, 1, 393, 197, 92, 43, 15, 8, 1, 1, 1107, 553, 265, 117, 53, 17, 9, 1, 1, 3139, 1570, 751, 346, 145, 64, 19, 10, 1, 1, 8953, 4476, 2156, 991, 441, 176, 76, 21, 11, 1, 1
Offset: 0
Examples
First rows of the triangle: 1; 1, 1; 3, 1, 1; 7, 4, 1, 1; 19, 9, 5, 1, 1; 51, 26, 11, 6, 1, 1; 141, 70, 34, 13, 7, 1, 1; 393, 197, 92, 43, 15, 8, 1, 1; 1107, 553, 265, 117, 53, 17, 9, 1, 1; 3139, 1570, 751, 346, 145, 64, 19, 10, 1, 1; 8953, 4476, 2156, 991, 441, 176, 76, 21, 11, 1, 1;
Programs
-
Maple
A158793 := proc (n, k) add((-1)^(n+j)*binomial(n, j)*binomial(2*j-k, j-k), j = k..n); end proc: seq(seq(A158793(n, k), k = 0..n), n = 0..10); # Peter Bala, Jul 13 2021
-
Mathematica
T[n_, k_] := (-1)^(k + n) Binomial[n, k] HypergeometricPFQ[{k/2 + 1/2, k/2 + 1, k - n}, {k + 1, k + 1}, 4]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Jul 17 2021 *)
Formula
T(n, m) = Sum_{k=m..n-1} A130595(n,k) * A092392(k+1,m+1), with the triangular interpretation of A092392.
Conjecture: T(n,1) = A113682(n-1). - R. J. Mathar, Oct 06 2009
Sum_{k=0..n} T(n,k)*x^k = A002426(n), A005773(n+1), A000244(n), A126932(n) for x = 0,1,2,3 respectively. - Philippe Deléham, Dec 03 2009
T(n, k) = (-1)^(k + n) binomial(n, k) hypergeom([k/2 + 1/2, k/2 + 1, k - n], [k + 1, k + 1], 4). - Peter Luschny, Jul 17 2021
Extensions
Simplified definition from R. J. Mathar, Oct 06 2009
Comments