cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158803 Numbers k such that k^2 == 2 (mod 41).

Original entry on oeis.org

17, 24, 58, 65, 99, 106, 140, 147, 181, 188, 222, 229, 263, 270, 304, 311, 345, 352, 386, 393, 427, 434, 468, 475, 509, 516, 550, 557, 591, 598, 632, 639, 673, 680, 714, 721, 755, 762, 796, 803, 837, 844, 878, 885, 919, 926, 960, 967, 1001, 1008, 1042, 1049
Offset: 1

Views

Author

Vincenzo Librandi, Mar 27 2009

Keywords

Comments

Numbers congruent to {17, 24} mod 41. - Amiram Eldar, Feb 26 2023

Programs

  • Magma
    I:=[17, 24, 58]; [n le 3 select I[n] else Self(n-1)+Self(n-2)-Self(n-3): n in [1..60]]; // Vincenzo Librandi, Mar 02 2012
    
  • Mathematica
    LinearRecurrence[{1, 1, -1}, {17, 24, 58}, 60] (* Vincenzo Librandi, Mar 02 2012 *)
    Select[Range[1200],PowerMod[#,2,41]==2&] (* Harvey P. Dale, Oct 24 2021 *)
  • PARI
    a(n) = (1/4)*(41+27*(-1)^(n-1)+82*(n-1)); \\ Vincenzo Librandi, Mar 02 2012

Formula

a(n) = a(n-1) + a(n-2) - a(n-3).
a(n) = (1/4)*(41 + 27*(-1)^(n-1) + 82*(n-1)).
First differences: a(2n) - a(2n-1) = 7, a(2n+1) - a(2n) = 34.
G.f.: x*(17 + 7*x + 17*x^2)/((1+x)*(x-1)^2). - R. J. Mathar, Apr 04 2009
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(7*Pi/82)*Pi/41. - Amiram Eldar, Feb 26 2023

Extensions

Comments translated to formulas by R. J. Mathar, Apr 04 2009