A158803 Numbers k such that k^2 == 2 (mod 41).
17, 24, 58, 65, 99, 106, 140, 147, 181, 188, 222, 229, 263, 270, 304, 311, 345, 352, 386, 393, 427, 434, 468, 475, 509, 516, 550, 557, 591, 598, 632, 639, 673, 680, 714, 721, 755, 762, 796, 803, 837, 844, 878, 885, 919, 926, 960, 967, 1001, 1008, 1042, 1049
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Magma
I:=[17, 24, 58]; [n le 3 select I[n] else Self(n-1)+Self(n-2)-Self(n-3): n in [1..60]]; // Vincenzo Librandi, Mar 02 2012
-
Mathematica
LinearRecurrence[{1, 1, -1}, {17, 24, 58}, 60] (* Vincenzo Librandi, Mar 02 2012 *) Select[Range[1200],PowerMod[#,2,41]==2&] (* Harvey P. Dale, Oct 24 2021 *)
-
PARI
a(n) = (1/4)*(41+27*(-1)^(n-1)+82*(n-1)); \\ Vincenzo Librandi, Mar 02 2012
Formula
a(n) = a(n-1) + a(n-2) - a(n-3).
a(n) = (1/4)*(41 + 27*(-1)^(n-1) + 82*(n-1)).
First differences: a(2n) - a(2n-1) = 7, a(2n+1) - a(2n) = 34.
G.f.: x*(17 + 7*x + 17*x^2)/((1+x)*(x-1)^2). - R. J. Mathar, Apr 04 2009
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(7*Pi/82)*Pi/41. - Amiram Eldar, Feb 26 2023
Extensions
Comments translated to formulas by R. J. Mathar, Apr 04 2009
Comments