cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158811 Numerator of Hermite(n, 1/3).

Original entry on oeis.org

1, 2, -14, -100, 556, 8312, -33416, -964528, 2281360, 143454752, -82670816, -25987196992, -35605572416, 5542023405440, 19415750756224, -1357758396658432, -7957769497497344, 375118879242633728, 3185315224719454720, -115167886425174418432, -1319713579704402351104
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerator of 1, 2/3, -14/9, -100/27, 556/81, 8312/243, -33416/729, -964528/2187, 2281360/6561, 143454752/19683, -82670816/59049,...
		

Crossrefs

Cf. A000244 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(2/3)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 09 2018
  • Maple
    A158811 := proc(n)
            orthopoly[H](n,1/3) ;
            numer(%) ;
    end proc: # R. J. Mathar, Feb 16 2014
  • Mathematica
    Numerator[Table[HermiteH[n,1/3],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Mar 23 2011 *)
  • PARI
    a(n)=numerator(polhermite(n,1/3)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

D-finite with recurrence a(n) -2*a(n-1) +18*(n-1)*a(n-2)=0. [DLMF] - R. J. Mathar, Feb 16 2014
From G. C. Greubel, Jun 09 2018: (Start)
a(n) = 3^n * Hermite(n,1/3).
E.g.f.: exp(2*x-9*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(2/3)^(n-2*k)/(k!*(n-2*k)!)). (End)