A158824 Triangle T(n,k) = A000292(n) if k = 1 otherwise (k-1)*(n-k+1)*(n-k+2)/2, read by rows.
1, 4, 1, 10, 3, 2, 20, 6, 6, 3, 35, 10, 12, 9, 4, 56, 15, 20, 18, 12, 5, 84, 21, 30, 30, 24, 15, 6, 120, 28, 42, 45, 40, 30, 18, 7, 165, 36, 56, 63, 60, 50, 36, 21, 8, 220, 45, 72, 84, 84, 75, 60, 42, 24, 9, 286, 55, 90, 108, 112, 105, 90, 70, 48, 27, 10, 364, 66, 110, 135, 144, 140, 126, 105, 80, 54, 30, 11
Offset: 1
Examples
First few rows of the triangle are: 1; 4, 1; 10, 3, 2; 20, 6, 6, 3; 35, 10, 12, 9, 4; 56, 15, 20, 18, 12, 5; 84, 21, 30, 30, 24, 15, 6; 120, 28, 42, 45, 40, 30, 18, 7; 165, 36, 56, 63, 60, 50, 36, 21, 8; 220, 45, 72, 84, 84, 75, 60, 42, 24, 9; 286, 55, 90, 108, 112, 105, 90, 70, 48, 27, 10; 364, 66, 110, 135, 144, 140, 126, 105, 80, 54, 30, 11; 455, 78, 132, 165, 180, 180, 168, 147, 120, 90, 60, 33, 12; ...
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Magma
A158824:= func< n,k | k eq 1 select Binomial(n+2,3) else (k-1)*Binomial(n-k+2,2) >; [A158824(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 01 2021
-
Mathematica
T[n_, k_]:= If[k==1, Binomial[n+2, 3], (k-1)*Binomial[n-k+2, 2]]; Table[T[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Apr 01 2021 *)
-
Sage
def A158824(n,k): return binomial(n+2,3) if k==1 else (k-1)*binomial(n-k+2,2) flatten([[A158824(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 01 2021
Formula
T(n,k) = binomial(n+2,3) if k = 1 otherwise (k-1)*binomial(n-k+2, 2).
Sum_{k=1..n} T(n, k) = binomial(n+3, 4) = A000332(n+3). - G. C. Greubel, Apr 01 2021
Comments