cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158830 Triangle, read by rows n>=1, where row n is the n-th differences of column n of array A158825, where the g.f. of row n of A158825 is the n-th iteration of x*Catalan(x).

Original entry on oeis.org

1, 1, 0, 2, 0, 0, 5, 1, 0, 0, 14, 10, 0, 0, 0, 42, 70, 8, 0, 0, 0, 132, 424, 160, 4, 0, 0, 0, 429, 2382, 1978, 250, 1, 0, 0, 0, 1430, 12804, 19508, 6276, 302, 0, 0, 0, 0, 4862, 66946, 168608, 106492, 15674, 298, 0, 0, 0, 0, 16796, 343772, 1337684, 1445208, 451948
Offset: 1

Views

Author

Paul D. Hanna, Mar 28 2009

Keywords

Examples

			Triangle begins:
.1;
.1,0;
.2,0,0;
.5,1,0,0;
.14,10,0,0,0;
.42,70,8,0,0,0;
.132,424,160,4,0,0,0;
.429,2382,1978,250,1,0,0,0;
.1430,12804,19508,6276,302,0,0,0,0;
.4862,66946,168608,106492,15674,298,0,0,0,0;
.16796,343772,1337684,1445208,451948,33148,244,0,0,0,0;
.58786,1744314,10003422,16974314,9459090,1614906,61806,162,0,0,0,0;
.208012,8780912,71692452,180308420,161380816,51436848,5090124,103932,84,0,0,0,0;
....
where the g.f. of row n is (1-x)^n*[g.f. of column n of A158825];
g.f. of row n of array A158825 is the n-th iteration of x*C(x):
.1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,...;
.1,2,6,21,80,322,1348,5814,25674,115566,528528,2449746,...;
.1,3,12,54,260,1310,6824,36478,199094,1105478,6227712,...;
.1,4,20,110,640,3870,24084,153306,993978,6544242,43652340,...;
.1,5,30,195,1330,9380,67844,500619,3755156,28558484,...;
.1,6,42,315,2464,19852,163576,1372196,11682348,100707972,...;
.1,7,56,476,4200,38052,351792,3305484,31478628,303208212,...;
.1,8,72,684,6720,67620,693048,7209036,75915708,807845676,...;
....
ROW-REVERSAL yields triangle A122890:
.1;
.0,1;
.0,0,2;
.0,0,1,5;
.0,0,0,10,14;
.0,0,0,8,70,42;
.0,0,0,4,160,424,132;
.0,0,0,1,250,1978,2382,429;
.0,0,0,0,302,6276,19508,12804,1430; ...
where g.f. of row n = (1-x)^n*[g.f. of column n of A122888];
g.f. of row n of A122888 is the n-th iteration of x+x^2:
.1;
.1,1;
.1,2,2,1;
.1,3,6,9,10,8,4,1;
.1,4,12,30,64,118,188,258,302,298,244,162,84,32,8,1; ...
		

Crossrefs

Cf. A158825, A122890 (row-reversal), A122888, columns: A000108, A122892.

Programs

  • Mathematica
    nmax = 11;
    f[0][x_] := x; f[n_][x_] := f[n][x] = f[n - 1][x + x^2] // Expand;
    T = Table[SeriesCoefficient[f[n][x], {x, 0, k}], {n, 0, nmax}, {k, 1, nmax}];
    row[n_] := CoefficientList[(1-x)^n*(T[[All, n]].x^Range[0, nmax])+O[x]^nmax, x] // Reverse;
    Table[row[n], {n, 1, nmax}] // Flatten (* Jean-François Alcover, Oct 26 2018 *)
  • PARI
    {T(n, k)=local(F=x, CAT=serreverse(x-x^2+x*O(x^(n+2))), M, N, P); M=matrix(n+2, n+2, r, c, F=x; for(i=1, r, F=subst(F, x, CAT)); polcoeff(F, c)); Vec(truncate(Ser(vector(n+1,r,M[r,n+1])))*(1-x)^(n+1) +x*O(x^k))[k+1]}

Formula

Row sums equal the factorial numbers.
G.f. of row n = (1-x)^n*[g.f. of column n of A158825] where the g.f. of row n of array A158825 is the n-th iteration of x*C(x) and C(x) is the g.f. of the Catalan sequence A000108.
Row-reversal is triangle A122890 where g.f. of row n of A122890 = (1-x)^n*[g.f. of column n of A122888], and the g.f. of row n of array A122888 is the n-th iteration of x+x^2.

Extensions

Edited by N. J. A. Sloane, Oct 04 2010, to make entries, offset, b-file and link to b-file all consistent.