cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A158825 Square array of coefficients in the successive iterations of x*C(x) = (1-sqrt(1-4*x))/2 where C(x) is the g.f. of the Catalan numbers (A000108); read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 5, 1, 4, 12, 21, 14, 1, 5, 20, 54, 80, 42, 1, 6, 30, 110, 260, 322, 132, 1, 7, 42, 195, 640, 1310, 1348, 429, 1, 8, 56, 315, 1330, 3870, 6824, 5814, 1430, 1, 9, 72, 476, 2464, 9380, 24084, 36478, 25674, 4862, 1, 10, 90, 684, 4200, 19852, 67844, 153306, 199094, 115566, 16796
Offset: 1

Views

Author

Paul D. Hanna, Mar 28 2009, Mar 29 2009

Keywords

Examples

			Square array of coefficients in iterations of x*C(x) begins:
  1,  1,   2,    5,    14,      42,      132,       429,       1430, ... A000108;
  1,  2,   6,   21,    80,     322,     1348,      5814,      25674, ... A121988;
  1,  3,  12,   54,   260,    1310,     6824,     36478,     199094, ... A158826;
  1,  4,  20,  110,   640,    3870,    24084,    153306,     993978, ... A158827;
  1,  5,  30,  195,  1330,    9380,    67844,    500619,    3755156, ... A158828;
  1,  6,  42,  315,  2464,   19852,   163576,   1372196,   11682348, ...;
  1,  7,  56,  476,  4200,   38052,   351792,   3305484,   31478628, ...;
  1,  8,  72,  684,  6720,   67620,   693048,   7209036,   75915708, ...;
  1,  9,  90,  945, 10230,  113190,  1273668,  14528217,  167607066, ...;
  1, 10, 110, 1265, 14960,  180510,  2212188,  27454218,  344320262, ...;
  1, 11, 132, 1650, 21164,  276562,  3666520,  49181418,  666200106, ...;
  1, 12, 156, 2106, 29120,  409682,  5841836,  84218134, 1225314662, ...;
  1, 13, 182, 2639, 39130,  589680,  8999172, 138755799, 2157976392, ...;
  1, 14, 210, 3255, 51520,  827960, 13464752, 221101608, 3660331064, ...;
  1, 15, 240, 3960, 66640, 1137640, 19640032, 342179672, 6007747368, ...;
  1, 16, 272, 4760, 84864, 1533672, 28012464, 516105720, 9578580504, ...;
ILLUSTRATE ITERATIONS.
       Let G(x) = x*C(x), then the first few iterations of G(x) are:
           G(x) = x +   x^2 +  2*x^3 +   5*x^4 +  14*x^5 + ...;
        G(G(x)) = x + 2*x^2 +  6*x^3 +  21*x^4 +  80*x^5 + ...;
     G(G(G(x))) = x + 3*x^2 + 12*x^3 +  54*x^4 + 260*x^5 + ...;
  G(G(G(G(x)))) = x + 4*x^2 + 20*x^3 + 110*x^4 + 640*x^5 + ...;
...
RELATED TRIANGLES.
The g.f. of column n is (g.f. of row n of A158830)/(1-x)^n
where triangle A158830 begins: 1;
      1,       0;
      2,       0,        0;
      5,       1,        0,        0;
     14,      10,        0,        0,       0;
     42,      70,        8,        0,       0,       0;
    132,     424,      160,        4,       0,       0,     0;
    429,    2382,     1978,      250,       1,       0,     0,   0;
   1430,   12804,    19508,     6276,     302,       0,     0,   0, 0;
   4862,   66946,   168608,   106492,   15674,     298,     0,   0, 0, 0;
  16796,  343772,  1337684,  1445208,  451948,   33148,   244,   0, 0, 0, 0;
  58786, 1744314, 10003422, 16974314, 9459090, 1614906, 61806, 162, 0, 0, 0, 0;
  ...
Triangle A158835 transforms one diagonal into the next:
       1;
       1,      1;
       4,      2,     1;
      27,     11,     3,    1;
     254,     94,    21,    4,   1;
    3062,   1072,   217,   34,   5,  1;
   45052,  15212,  2904,  412,  50,  6, 1;
  783151, 257777, 47337, 6325, 695, 69, 7, 1; ...
so that:
  A158835 * A158831 = A158832;
  A158835 * A158832 = A158833;
  A158835 * A158833 = A158834;
where the diagonals start:
  A158831 = [1, 1,  6,  54,  640,  9380,  163576,  3305484, ...];
  A158832 = [1, 2, 12, 110, 1330, 19852,  351792,  7209036, ...];
  A158833 = [1, 3, 20, 195, 2464, 38052,  693048, 14528217, ...];
  A158834 = [1, 4, 30, 315, 4200, 67620, 1273668, 27454218, ...].
		

Crossrefs

Antidiagonal sums: A158829.
Related triangles: A158830, A158835.
Variant: A122888.

Programs

  • Mathematica
    Clear[row]; nmax = 12;
    row[n_]:= row[n]= CoefficientList[Nest[(1-Sqrt[1-4#])/2&, x, n] + O[x]^(nmax+1), x] //Rest;
    T[n_, k_]:= row[n][[k]];
    Table[T[n-k+1, k], {n, nmax}, {k, n}]//Flatten (* Jean-François Alcover, Jul 13 2018, updated Aug 09 2018 *)
  • PARI
    {T(n,k)= local(F=serreverse(x-x^2+O(x^(k+2))), G=x);
    for(i=1, n, G=subst(F,x,G)); polcoeff(G,k)}

Formula

G.f. of column n = (g.f. of row n of A158830)/(1-x)^n.
Row k equals the first column of the k-th matrix power of Catalan triangle A033184; thus triangle A033184 transforms row n into row n+1 of this array (A158825). - Paul D. Hanna, Mar 30 2009
From G. C. Greubel, Apr 01 2021: (Start)
T(n, 1) = A000012(n), T(n, 2) = A000027(n).
T(n, 3) = A002378(n), T(n, 4) = A160378(n+1). (End)

A122890 Triangle, read by rows, where the g.f. of row n divided by (1-x)^n yields the g.f. of column n in the triangle A122888, for n>=1.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 1, 5, 0, 0, 0, 10, 14, 0, 0, 0, 8, 70, 42, 0, 0, 0, 4, 160, 424, 132, 0, 0, 0, 1, 250, 1978, 2382, 429, 0, 0, 0, 0, 302, 6276, 19508, 12804, 1430, 0, 0, 0, 0, 298, 15674, 106492, 168608, 66946, 4862, 0, 0, 0, 0, 244, 33148, 451948, 1445208, 1337684, 343772, 16796
Offset: 0

Views

Author

Paul D. Hanna, Sep 18 2006

Keywords

Comments

Main diagonal forms the Catalan numbers (A000108). Row sums gives the factorials. In table A122888, row n lists the coefficients of x^k, k = 1..2^n, in the n-th self-composition of (x + x^2) for n >= 0.
Parker gave the following combinatorial interpretation of the numbers: For n > 0, T(n, j) is the number of sequences c_1c_2...c_n of positive integers such that 1 <= c_i <= i for each i in {1, 2, .., n} with exactly j - 1 values of i such that c_i <= c_{i+1}. - Peter Luschny, May 05 2013

Examples

			Triangle begins:
1;
0,1;
0,0,2;
0,0,1,5;
0,0,0,10,14;
0,0,0,8,70,42;
0,0,0,4,160,424,132;
0,0,0,1,250,1978,2382,429;
0,0,0,0,302,6276,19508,12804,1430;
0,0,0,0,298,15674,106492,168608,66946,4862;
0,0,0,0,244,33148,451948,1445208,1337684,343772,16796;
0,0,0,0,162,61806,1614906,9459090,16974314,10003422,1744314,58786;
0,0,0,0,84,103932,5090124,51436848,161380816,180308420,71692452,8780912,208012; ...
Table A122888 starts:
1;
1, 1;
1, 2, 2, 1;
1, 3, 6, 9, 10, 8, 4, 1;
1, 4, 12, 30, 64, 118, 188, 258, 302, 298, 244, 162, 84, 32, 8, 1;
1, 5, 20, 70, 220, 630, 1656, 4014, 8994, 18654, 35832, 63750,...;
1, 6, 30, 135, 560, 2170, 7916, 27326, 89582, 279622, 832680,...;
where row n gives the g.f. of the n-th self-composition of (x+x^2).
From _Paul D. Hanna_, Apr 11 2009: (Start)
ROW-REVERSAL yields triangle A158830:
1;
1, 0;
2, 0, 0;
5, 1, 0, 0;
14, 10, 0, 0, 0;
42, 70, 8, 0, 0, 0;
132, 424, 160, 4, 0, 0, 0;
429, 2382, 1978, 250, 1, 0, 0, 0; ...
where
g.f. of row n of A158830 = (1-x)^n*[g.f. of column n of A158825];
g.f. of row n of A158825 = n-th iteration of x*Catalan(x).
RELATED ARRAY A158825 begins:
1,1,2,5,14,42,132,429,1430,4862,16796,58786,...;
1,2,6,21,80,322,1348,5814,25674,115566,528528,...;
1,3,12,54,260,1310,6824,36478,199094,1105478,...;
1,4,20,110,640,3870,24084,153306,993978,...;
1,5,30,195,1330,9380,67844,500619,3755156,...;
1,6,42,315,2464,19852,163576,1372196,11682348,...;
1,7,56,476,4200,38052,351792,3305484,31478628,...;
1,8,72,684,6720,67620,693048,7209036,75915708,...; ...
which consists of successive iterations of x*Catalan(x).
(End)
		

Crossrefs

Cf. A122888; A122891 (column sums); diagonals: A122892, A000108.
Cf. related tables: A158830, A158825. [Paul D. Hanna, Apr 11 2009]

Programs

  • Mathematica
    nmax = 11;
    f[0][x_] := x; f[n_][x_] := f[n][x] = f[n - 1][x + x^2] // Expand; T = Table[ SeriesCoefficient[f[n][x], {x, 0, k}], {n, 0, nmax}, {k, 1, nmax}];
    row[n_] := CoefficientList[(1-x)^n*(T[[All, n]].x^Range[0, nmax])+O[x]^nmax, x];
    Table[row[n], {n, 1, nmax}] // Flatten (* Jean-François Alcover, Jul 13 2018 *)

Formula

From Paul D. Hanna, Apr 11 2009: (Start)
G.f. of row n: (1-x)^n*[g.f. of column n of A122888] where the g.f. of row n of A122888 is the n-th iteration of x+x^2.
Row-reversal forms triangle A158830 where g.f. of row n of A158830 = (1-x)^n*[g.f. of column n of A158825], and the g.f. of row n of array A158825 is the n-th iteration of x*C(x) and C(x) is the g.f. of the Catalan sequence A000108. (End)

A308726 The number of permutations of length n and tier at most 1, that is, the number of permutations of length n sortable by two passes through a stack where outputting the longest prefix matching the identity permutation is prioritized.

Original entry on oeis.org

1, 1, 2, 6, 24, 112, 556, 2811, 14234, 71808, 360568, 1803100, 8988924, 44719588, 222221416, 1103827306, 5484124128, 27265300504, 135695994964, 676228846370, 3374996253420, 16871826671280, 84488005896720, 423828619074900, 2129868537725916, 10722045181336524
Offset: 0

Views

Author

Rebecca Smith, Jun 20 2019

Keywords

Comments

This counts the permutations of length n that avoid the permutations 24153, 24513, 24531, 34251, 35241, 42513, 42531, 45231, 261453, 231564, 523164.

References

  • Toufik Mansour, Howard Skogman, and Rebecca Smith. "Passing through a stack k times." Discrete Mathematics, Algorithms and Applications 11.01 (2019): 1950003.

Crossrefs

Cf. A122890 (sum of last two rows), A158830 (sum of first two rows).

Programs

  • Mathematica
    CoefficientList[Series[(2 + (2*x - 1)/Sqrt[1 - 4*x] - Sqrt[2*Sqrt[1 - 4*x] - 1])/(2*x), {x, 0, 25}], x] (* Vaclav Kotesovec, Jun 30 2019 *)

Formula

G.f.: (2 + (2*x-1)/sqrt(1-4*x) - sqrt(2*sqrt(1-4*x) - 1)) / (2*x). - Vaclav Kotesovec, Jun 30 2019
a(n) ~ 2^(4*n + 3/2) / (sqrt(Pi) * n^(3/2) * 3^(n + 1/2)). - Vaclav Kotesovec, Jun 30 2019
Conjecture: D-finite with recurrence: 3*n*(n-1)*(n+1)*a(n) -n*(n-1)*(67*n-101)*a(n-1) +2*(n-1)*(286*n^2-1112*n+1089)*a(n-2) +4*(-580*n^3+4200*n^2-10106*n+8049)*a(n-3) +24*(184*n^3-1784*n^2+5770*n-6221)*a(n-4) -96*(4*n-15)*(2*n-9)*(4*n-17)*a(n-5)=0. - R. J. Mathar, Jan 27 2020

Extensions

More terms from Vaclav Kotesovec, Jun 30 2019
Showing 1-3 of 3 results.