cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A158835 Triangle, read by rows, that transforms diagonals in the array A158825 of coefficients of successive iterations of x*C(x) where C(x) is the Catalan function (A000108).

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 27, 11, 3, 1, 254, 94, 21, 4, 1, 3062, 1072, 217, 34, 5, 1, 45052, 15212, 2904, 412, 50, 6, 1, 783151, 257777, 47337, 6325, 695, 69, 7, 1, 15712342, 5074738, 906557, 116372, 12035, 1082, 91, 8, 1, 357459042, 113775490, 19910808, 2483706
Offset: 1

Views

Author

Paul D. Hanna, Mar 28 2009, Mar 29 2009

Keywords

Comments

Conjecture: n-th reversed row polynomial is t_n where we start with vector v of fixed length m with elements v_i = 1, then set t := v and for i=1..m-1, for j=1..i, for k=j+1..i+1 apply v_k := v_k + z*v_{k-1} and t_{i+1} := v_{i+1} (after ending each cycle for j). - Mikhail Kurkov, Sep 03 2024

Examples

			Triangle T begins:
  1;
  1,1;
  4,2,1;
  27,11,3,1;
  254,94,21,4,1;
  3062,1072,217,34,5,1;
  45052,15212,2904,412,50,6,1;
  783151,257777,47337,6325,695,69,7,1;
  15712342,5074738,906557,116372,12035,1082,91,8,1;
  357459042,113775490,19910808,2483706,246596,20859,1589,116,9,1;
  9094926988,2861365660,492818850,60168736,5801510,470928,33747,2232,144,10,1;
  ...
Array A158825 of coefficients in iterations of x*C(x) begins:
  1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,...;
  1,2,6,21,80,322,1348,5814,25674,115566,528528,2449746,...;
  1,3,12,54,260,1310,6824,36478,199094,1105478,6227712,...;
  1,4,20,110,640,3870,24084,153306,993978,6544242,43652340,...;
  1,5,30,195,1330,9380,67844,500619,3755156,28558484,...;
  1,6,42,315,2464,19852,163576,1372196,11682348,100707972,...;
  1,7,56,476,4200,38052,351792,3305484,31478628,303208212,...;
  1,8,72,684,6720,67620,693048,7209036,75915708,807845676,...;
  1,9,90,945,10230,113190,1273668,14528217,167607066,...;
  1,10,110,1265,14960,180510,2212188,27454218,344320262,...;
  ...
This triangle transforms diagonals of A158825 into each other:
T*A158831 = A158832; T*A158832 = A158833; T*A158833 = A158834;
where:
A158831 = [1,1,6,54,640,9380,163576,3305484,...];
A158832 = [1,2,12,110,1330,19852,351792,7209036,...];
A158833 = [1,3,20,195,2464,38052,693048,14528217,...];
A158834 = [1,4,30,315,4200,67620,1273668,27454218,...].
		

Crossrefs

Cf. columns: A158836, A158837, A158838, A158839, row sums: A158840.

Programs

  • PARI
    {T(n, k)=local(F=x, CAT=serreverse(x-x^2+x*O(x^(n+2))), M, N, P, m=max(n, k)); M=matrix(m+2, m+2, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, CAT)); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, M[r, c]); P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]}
    for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))

Extensions

Edited by N. J. A. Sloane, Oct 04 2010, to make entries, offset, b-file and link to b-file all consistent.

A158836 Column 0 of triangle A158835.

Original entry on oeis.org

1, 1, 4, 27, 254, 3062, 45052, 783151, 15712342, 357459042, 9094926988, 255939571048, 7893741230500, 264806871279676, 9600056691219936, 374033821840909263, 15586672520501193866, 691789220336675178652
Offset: 0

Views

Author

Paul D. Hanna, Mar 28 2009

Keywords

Comments

Triangle A158835 transforms diagonals in the array A158825 of coefficients of successive iterations of x*C(x) where C(x) is the Catalan function (A000108).

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x, CAT=serreverse(x-x^2+x*O(x^(n+2))),M,N,P);M=matrix(n+2, n+2, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, CAT)); polcoeff(F, c)); N=matrix(n+1, n+1, r, c, M[r, c]); P=matrix(n+1, n+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1,1]}

A158837 Column 1 of triangle A158835.

Original entry on oeis.org

1, 2, 11, 94, 1072, 15212, 257777, 5074738, 113775490, 2861365660, 79763482974, 2440866020252, 81343355108428, 2932370770780016, 113695507437209845, 4717853729131352186, 208615291319607614600, 9792578421235713418464
Offset: 0

Views

Author

Paul D. Hanna, Mar 28 2009

Keywords

Comments

Triangle A158835 transforms diagonals in the array A158825 of coefficients of successive iterations of x*C(x) where C(x) is the Catalan function (A000108).

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x, CAT=serreverse(x-x^2+x*O(x^(n+3))),M,N,P);M=matrix(n+3, n+3, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, CAT)); polcoeff(F, c)); N=matrix(n+2, n+2, r, c, M[r, c]); P=matrix(n+2, n+2, r, c, M[r+1, c]); (P~*N~^-1)[n+2,2]}

A158839 Column 3 of triangle A158835.

Original entry on oeis.org

1, 4, 34, 412, 6325, 116372, 2483706, 60168736, 1628677692, 48672911296, 1590752204044, 56418074957840, 2157411204773415, 88464995576660084, 3871611011946560294, 180101399407072883012, 8873328068327122625596
Offset: 0

Views

Author

Paul D. Hanna, Mar 28 2009

Keywords

Comments

Triangle A158835 transforms diagonals in the array A158825 of coefficients of successive iterations of x*C(x) where C(x) is the Catalan function (A000108).

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x, CAT=serreverse(x-x^2+x*O(x^(n+5))),M,N,P);M=matrix(n+5, n+5, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, CAT)); polcoeff(F, c)); N=matrix(n+4, n+4, r, c, M[r, c]); P=matrix(n+4, n+4, r, c, M[r+1, c]); (P~*N~^-1)[n+4,4]}

A158838 Column 2 of triangle A158835.

Original entry on oeis.org

1, 3, 21, 217, 2904, 47337, 906557, 19910808, 492818850, 13564326950, 410807572044, 13573135469214, 485765085176420, 18717987193565613, 772565258231236269, 34002334709760133807, 1589555183231724515700
Offset: 0

Views

Author

Paul D. Hanna, Mar 28 2009

Keywords

Comments

Triangle A158835 transforms diagonals in the array A158825 of coefficients of successive iterations of x*C(x) where C(x) is the Catalan function (A000108).

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x, CAT=serreverse(x-x^2+x*O(x^(n+4))),M,N,P);M=matrix(n+4, n+4, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, CAT)); polcoeff(F, c)); N=matrix(n+3, n+3, r, c, M[r, c]); P=matrix(n+3, n+3, r, c, M[r+1, c]); (P~*N~^-1)[n+3,3]}
Showing 1-5 of 5 results.