A158854 Triangle T(n,k) read by rows: coefficient [x^k] of the polynomial (1-x)^(1+floor(n/2))* (1+x)^floor((n-1)/2) in row n, column k.
1, 1, -1, 1, -2, 1, 1, -1, -1, 1, 1, -2, 0, 2, -1, 1, -1, -2, 2, 1, -1, 1, -2, -1, 4, -1, -2, 1, 1, -1, -3, 3, 3, -3, -1, 1, 1, -2, -2, 6, 0, -6, 2, 2, -1, 1, -1, -4, 4, 6, -6, -4, 4, 1, -1, 1, -2, -3, 8, 2, -12, 2, 8, -3, -2, 1
Offset: 0
Examples
1; 1, -1; 1, -2, 1; 1, -1, -1, 1; 1, -2, 0, 2, -1; 1, -1, -2, 2, 1, -1; 1, -2, -1, 4, -1, -2, 1; 1, -1, -3, 3, 3, -3, -1, 1; 1, -2, -2, 6, 0, -6, 2, 2, -1; 1, -1, -4, 4, 6, -6, -4, 4, 1, -1; 1, -2, -3, 8, 2, -12, 2, 8, -3, -2, 1;
Crossrefs
Cf. A051160
Programs
-
Maple
A158854 := proc(n,k) (1-x)^(1+floor(n/2))*(1+x)^floor((n-1)/2) ; coeftayl(%,x=0,k) ; end proc: # R. J. Mathar, Apr 08 2013
-
Mathematica
Clear[p, x, n, m, a]; p[x_, n_] = If[n == 0, 1, (1 - x)^(Floor[(n)/ 2] + 1)(1 + x)^(Floor[(n - 1)/2])]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; Table[CoefficientList[ExpandAll[p[x, n]], x], {n, 0, 10}]; Flatten[%]
Formula
T(n,k) = T(n-2,k) - T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,2) = 1, T(1,1)=-1, T(2,1)=-2, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Oct 25 2013
Comments