A158868 Triangle T(n, k) = (2*n+1)!! * 2^(floor((n-1)/2) + floor(k/2) + 1) * Beta(floor(n/2) + floor((k-1)/2) + 2, floor((n-1)/2) + floor(k/2) + 2), read by rows.
1, 5, 2, 14, 7, 6, 126, 54, 54, 24, 594, 297, 264, 132, 120, 7722, 3432, 3432, 1560, 1560, 720, 51480, 25740, 23400, 11700, 10800, 5400, 5040, 875160, 397800, 397800, 183600, 183600, 85680, 85680, 40320, 7558200, 3779100, 3488400, 1744200, 1627920, 813960, 766080, 383040, 362880
Offset: 1
Examples
Triangle begins as: 1; 5, 2; 14, 7, 6; 126, 54, 54, 24; 594, 297, 264, 132, 120; 7722, 3432, 3432, 1560, 1560, 720; 51480, 25740, 23400, 11700, 10800, 5400, 5040; 875160, 397800, 397800, 183600, 183600, 85680, 85680, 40320; 7558200, 3779100, 3488400, 1744200, 1627920, 813960, 766080, 383040, 362880;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Crossrefs
Cf. A158867.
Programs
-
Mathematica
T[n_, k_]:= (2*n+1)!!*2^(1+Floor[n/2] +Floor[(k-1)/2])*Beta[Floor[n/2] +Floor[(k- 1)/2] +2, Floor[(n-1)/2] +Floor[k/2] +2]; Table[T[n, k], {n,10}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 07 2022 *)
-
Sage
def T(n,k): return (2*n+1).multifactorial(2)*2^(1+(n//2)+((k-1)//2))*beta(2+(n//2)+((k-1)//2), 2+((n-1)//2)+(k//2)) flatten([[T(n,k) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, Mar 07 2022
Formula
T(n, k) = (2*n+1)!! * 2^(floor((n-1)/2) + floor(k/2) + 1) * Beta(floor(n/2) + floor((k-1)/2) + 2, floor((n-1)/2) + floor(k/2) + 2).
T(n, n) = n!. - G. C. Greubel, Mar 07 2022
Extensions
Edited by G. C. Greubel, Mar 07 2022