cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158874 a(n) = (n + 4)*(n + 3)*(n + 2)*(n + 1)*n / 5 = 24*A000389(n+4).

Original entry on oeis.org

0, 24, 144, 504, 1344, 3024, 6048, 11088, 19008, 30888, 48048, 72072, 104832, 148512, 205632, 279072, 372096, 488376, 632016, 807576, 1020096, 1275120, 1578720, 1937520, 2358720, 2850120, 3420144, 4077864, 4833024, 5696064, 6678144, 7791168, 9047808
Offset: 0

Views

Author

N. J. A. Sloane, Nov 29 2009

Keywords

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, eq. (48), page 8.

Crossrefs

Partial sums of A052762.

Programs

  • Magma
    [n*(n^4+10*n^3+35*n^2+50*n+24)/5: n in [0..30]]; // Vincenzo Librandi, Oct 05 2011
    
  • Mathematica
    Table[(n + 4)*(n + 3)*(n + 2)*(n + 1)*n/5, {n,0,50}] (* G. C. Greubel, Nov 21 2017 *)
  • PARI
    for(n=0,30, print1((n + 4)*(n + 3)*(n + 2)*(n + 1)*n/5, ", ")) \\ G. C. Greubel, Nov 21 2017

Formula

G.f.: 24*x / (x-1)^6 . - R. J. Mathar, Oct 03 2011
E.g.f.: x*(x^4 + 20*x^3 + 120*x^2 + 240*x + 120)*exp(x)/5. - G. C. Greubel, Nov 21 2017
From Amiram Eldar, Jul 02 2023: (Start)
Sum_{n>=1} 1/a(n) = 5/96.
Sum_{n>=1} (-1)^(n+1)/a(n) = 10*log(2)/3 - 655/288. (End)