A158895 A list of primes written in order of their first appearance in a table of prime factorizations of 2^k+1, k=1,2,... .
3, 5, 17, 11, 13, 43, 257, 19, 41, 683, 241, 2731, 29, 113, 331, 65537, 43691, 37, 109, 174763, 61681, 5419, 397, 2113, 2796203, 97, 673, 251, 4051, 53, 157, 1613, 87211, 15790321, 59, 3033169, 61, 1321, 715827883
Offset: 1
Examples
2^1+1=3, 2^2+1=5, 2^3+1=3^2 and 2^4+1=17. Thus a(1)=3, a(2)=5 and a(3)=17, on noting that 2^3+1 contributes no new prime factors.
Links
- Harvey P. Dale and Charles R Greathouse IV, Table of n, a(n) for n = 1..4017 (first 650 terms from Dale)
Programs
-
Mathematica
DeleteDuplicates[Flatten[Table[Transpose[FactorInteger[2^k+1]][[1]],{k,50}]]] (* Harvey P. Dale, Mar 30 2014 *)
-
PARI
lista(n)=prs = Set(); for (k=1, n, f = factor(2^k+1); for (i=1, length(f~), onef = f[i,1]; if (! setsearch(prs, onef), print1(onef, ", "); prs = setunion(prs, Set(onef));););); \\ Michel Marcus, Apr 18 2013
-
PARI
G=1; for(n=1,500, g=gcd(f=2^n+1,G); while(g>1, g=gcd(g,f/=g)); f=factor(f)[,1]; if(#f, for(i=1,#f, print1(f[i]", ")); G*=factorback(f))) \\ Charles R Greathouse IV, Jan 03 2018
Comments