cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158936 List of coprime pairs (x,y) such that x^2+y^2 = 13^n with 0

Original entry on oeis.org

0, 1, 2, 3, 5, 12, 9, 46, 119, 120, 122, 597, 828, 2035, 4449, 6554, 239, 28560, 56403, 86158, 145668, 341525, 246046, 1315911, 3369960, 3455641, 3627003, 17021162, 23161315, 58317492, 128629846, 186118929, 13651680, 815616479, 1590277918, 2474152797, 4241902555, 9719139348, 6712571031, 37641223154, 95420159401, 99498527400, 107655263398, 485257533003
Offset: 0

Views

Author

Zak Seidov, Apr 10 2011

Keywords

Comments

For n>2, all other solutions (x,y) are divisible by 13, e.g., 26^2+39^2=13^3.

Examples

			n=1: 13^1=2^2+3^2, hence a(1)=2, a(2)=3,
n=2: 13^2=5^2+12^2, hence a(3)=5, a(4)=12.
		

Crossrefs

Cf. A098122 for case x^2+y^2=5^n.
Cf. A188948, A188949 for the values of x and y separately.
Cf. A188982, A188983 for even and odd terms.

Programs

  • Maple
    f:= proc(n) local q;
      q:= map(abs, [Re,Im]((2+3*I)^n));
      op(sort(q))
    end proc:
    map(f, [$0..50]); # Robert Israel, Feb 27 2024
  • Mathematica
    s={2,3};x=2;y=3;Do[A=3x+2y;If[Mod[A,13]==0,A=Abs[3x-2y];B=2x+3y,B=Abs[2x-3y]];x=A;If[A>B,x=B;y=A,y=B];s=Join[s,{x,y}],{20}];s
    Table[Select[PowersRepresentations[13^n, 2, 2], CoprimeQ @@ # &][[1]], {n, 0, 21}] (* T. D. Noe, Apr 12 2011 *)

Formula

a(2*n) = min(|Re((3+2*i)^n)|, |Im((3+2*i)^n)|), a(2*n+1) = max(|Re((3+2*i)^n)|, |Im((3+2*i)^n)|). - Robert Israel, Feb 27 2024