cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158942 Nonsquares coprime to 10.

Original entry on oeis.org

3, 7, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39, 41, 43, 47, 51, 53, 57, 59, 61, 63, 67, 69, 71, 73, 77, 79, 83, 87, 89, 91, 93, 97, 99, 101, 103, 107, 109, 111, 113, 117, 119, 123, 127, 129, 131, 133, 137, 139, 141, 143, 147, 149, 151, 153, 157, 159, 161, 163
Offset: 1

Views

Author

Eric Desbiaux, Mar 31 2009

Keywords

Comments

Odd primes + odd nonprime integers that have an odd numbers of proper divisors A082686, are the result of a suppression of integers satisfying: 2n (A005843); n^2 (A000290); n^2+n (A002378). Of these, we can suppress the multiples of 5 (A008587).
Decimal expansion of 1/10^(n^2+n) + 1/10^(n^2) + 1/10^(5*n) + 1/10^(2*n) gives a 0 for these integers.
2n + n(n+1) + n^2 = 2n^2 + 3n = A014106.
2n^2 + 3n + 5n = 2n^2 + 8n = 2n(n+4) = A067728 8(8+n) is a perfect square.

Crossrefs

Programs

  • Mathematica
    Select[Range@ 163, ! IntegerQ@ Sqrt@ # && CoprimeQ[#, 10] &] (* Michael De Vlieger, Dec 11 2015 *)
  • PARI
    isok(n) = (n % 2) && (n % 5) && (isprime(n) || (numdiv(n) % 2 == 0)); \\ Michel Marcus, Aug 27 2013
    
  • PARI
    is(n)=gcd(n,10)==1 && !issquare(n) \\ Charles R Greathouse IV, Sep 05 2013

Extensions

New name from Charles R Greathouse IV, Sep 05 2013