A158944 Triangle by columns: the natural numbers interleaved with zeros in every column: (1, 0, 2, 0, 3, 0, 4, ...)
1, 0, 1, 2, 0, 1, 0, 2, 0, 1, 3, 0, 2, 0, 1, 0, 3, 0, 2, 0, 1, 4, 0, 3, 0, 2, 0, 1, 0, 4, 0, 3, 0, 2, 0, 1, 5, 0, 4, 0, 3, 0, 2, 0, 1, 0, 5, 0, 4, 0, 3, 0, 2, 0, 1, 6, 0, 5, 0, 4, 0, 3, 0, 2, 0, 1, 0, 6, 0, 5, 0, 4, 0, 3, 0, 2, 0, 1
Offset: 1
Examples
First few rows of the triangle = 1; 0, 1; 2, 0, 1; 0, 2, 0, 1; 3, 0, 2, 0, 1; 0, 3, 0, 2, 0, 1; 4, 0, 3, 0, 2, 0, 1; 0, 4, 0, 3, 0, 2, 0, 1; 5, 0, 4, 0, 3, 0, 2, 0, 1; 0, 5, 0, 4, 0, 3, 0, 2, 0, 1; 6, 0, 5, 0, 4, 0, 3, 0, 2, 0, 1; 0, 6, 0, 5, 0, 4, 0, 3, 0, 2, 0, 1; 7, 0, 6, 0, 5, 0, 4, 0, 3, 0, 2, 0, 1; ... The inverse array begins 1; 0, 1; -2, 0, 1; 0, -2, 0, 1; 1, 0, -2, 0, 1; 0, 1, 0, -2, 0, 1; 0, 0, 1, 0, -2, 0, 1; 0, 0, 0, 1, 0, -2, 0, 1; 0, 0, 0, 0, 1, 0, -2, 0, 1; ... - _Peter Bala_, Aug 15 2021
Links
- D. E. Davenport, L. W. Shapiro and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012).
Programs
-
Maple
seq(seq((1/2)*(n - k + 2) * (1 + (-1)^(n-k))/2, k = 0..n), n = 0..10) # Peter Bala, Aug 15 2021
Formula
Triangle by columns: A027656: (1, 0, 2, 0, 3, 0, 4, 0, 5, ...) in every column.
From Peter Bala, Aug 15 2021: (Start)
T(n,k) = (1/2)*(n - k + 2) * (1 + (-1)^(n-k))/2 for 0 <= k <= n.
Double Riordan array (1/(1-x)^2; x, x) as defined in Davenport et al.
The m-th power of the array is the double Riordan array (1/(1 - x)^(2*m); x, x). Cf. A156663. (End)
Comments