cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158949 Inverse Moebius transform of A065958.

Original entry on oeis.org

1, 6, 11, 26, 27, 66, 51, 106, 101, 162, 123, 286, 171, 306, 297, 426, 291, 606, 363, 702, 561, 738, 531, 1166, 677, 1026, 911, 1326, 843, 1782, 963, 1706, 1353, 1746, 1377, 2626, 1371, 2178, 1881, 2862, 1683, 3366, 1851, 3198, 2727, 3186, 2211, 4686, 2501
Offset: 1

Views

Author

Vladeta Jovovic, Mar 31 2009

Keywords

Crossrefs

Programs

  • Maple
    A158949 := proc(n) add(numtheory[sigma][2](d)^2*numtheory[mobius](n/d),d=numtheory[divisors](n))/n^2 ; end: seq( A158949(n),n=1..80) ; # R. J. Mathar, Apr 02 2009
  • Mathematica
    a[n_] := Sum[2^PrimeNu[n/d] d^2, {d, Divisors[n]}];
    Array[a, 80] (* Jean-François Alcover, Nov 20 2020 *)
    f[p_, e_] := (p^(2*e)*(p^2 + 1) - 2)/(p^2 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Dec 05 2022 *)
  • PARI
    a(n) = sumdiv(n, d, 2^omega(n/d) * d^2); \\ Daniel Suteu, Mar 07 2019

Formula

a(n) = (1/n^2)*Sum_{d|n} sigma_2(d)^2*moebius(n/d).
a(n) = Sum_{d|n} 2^omega(n/d) * d^2. - Daniel Suteu, Mar 07 2019
From Amiram Eldar, Dec 05 2022: (Start)
Multiplicative with a(p^e) = (p^(2*e)*(p^2+1) - 2)/(p^2-1).
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(3)^2/(3*zeta(6)) = 0.473436... . (End)
Dirichlet g.f.: zeta(s)^2*zeta(s-2)/zeta(2*s). - Amiram Eldar, Jan 06 2023
a(n) = Sum_{1 <= j, k <= n} tau(gcd(j, k, n)^2) = Sum_{d divides n} tau(d^2)* J_2(n/d), where the divisor function tau(n) = A000005(n) and the Jordan totient function J_2(n) = A007434(n). - Peter Bala, Jan 22 2024
a(n) = Sum_{d divides n} J_4(d)/J_2(d) = Sum_{1 <= i, j, k, l <= n} 1/(J_2(n/gcd(i,j,k,l,n))), where the Jordan totient function J_4(n) = A059377(n). - Peter Bala, Jan 23 2024

Extensions

Extended by R. J. Mathar, Apr 02 2009