cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158979 a(n) is the smallest number > n such that n^4 + a(n)^4 is prime.

Original entry on oeis.org

2, 3, 4, 5, 8, 7, 10, 9, 10, 13, 16, 13, 14, 15, 22, 17, 20, 23, 24, 29, 38, 29, 26, 41, 26, 27, 28, 33, 34, 37, 32, 37, 34, 35, 52, 37, 38, 39, 46, 41, 50, 53, 44, 47, 58, 55, 50, 49, 60, 61, 62, 61, 56, 55, 58, 59, 68, 61, 62, 73, 66, 77, 64, 67, 84, 71
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 01 2009

Keywords

Comments

For exponent 2 instead of 4 see A089489: Pythagorean triple has a prime hypotenuse.
Corresponding sequences with odd exponent u are impossible: x^u + y^u has factor x+y.
a(2k-1) is even, a(2k) is odd, a(n)-n is odd.
Conjecture: a(n) exists for all n, i.e., the sequence is well-defined and infinite.
Conjecture: a(n)-n = 1 for infinitely many n.
The largest value of a(n)-n for n <= 100 occurs at n = 90: 121-90 = 31.
a(n)-n = 1 for 35 values of n <= 100.

Examples

			1^4 + 2^4 = 17 is prime, so a(1) = 2.
2^4 + 3^4 = 97 is prime, so a(2) = 3.
5^4 + 6^4 = 1921 = 17*113, 5^4 + 7^4 = 3026 = 2*17*89, 5^4 + 8^4 = 4721 is prime, so a(5) = 8.
		

Crossrefs

Cf. A089489.

Programs

  • Magma
    S:=[]; for n in [1..72] do q:=n^4; k:=n+1; while not IsPrime(q+k^4) do k+:=1; end while; Append(~S, k); end for; S; // Klaus Brockhaus, Apr 12 2009
  • Mathematica
    sn[n_]:=Module[{k=n+1,n4=n^4},While[CompositeQ[n4+k^4],k++];k]; Array[sn,80] (* Harvey P. Dale, Aug 09 2023 *)

Extensions

Edited and entries verified by Klaus Brockhaus, Apr 12 2009
Corrected by Harvey P. Dale, Aug 09 2023