cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158982 Coefficients of polynomials P(n,x):=-2+P(n-1,x)^2, where P(0,x)=x-2.

Original entry on oeis.org

1, -2, 1, -4, 2, 1, -8, 20, -16, 2, 1, -16, 104, -352, 660, -672, 336, -64, 2, 1, -32, 464, -4032, 23400, -95680, 283360, -615296, 980628, -1136960, 940576, -537472, 201552, -45696, 5440, -256, 2, 1, -64, 1952, -37760, 520144, -5430656, 44662464
Offset: 1

Views

Author

Clark Kimberling, Apr 02 2009

Keywords

Comments

The 2^n zeros of P(n,x) are 2+2*cos[(2k-1)Pi/(2^(n+1))], k=1,2,...,2^n.
P(n,x) = 2*T(2^(n+1),(1/2)x^(1/2)), where T(k,t) is the k-th Chebyshev polynomial of the first kind.

Examples

			Row 1: 1 -2 (from x-2)
Row 2: 1 -4 2 (from x^2-4x+2)
Row 3: 1 -8 20 -16 2
Row 4: 1 -16 104 -352 660 -672 336 -64 2
		

Crossrefs

Programs

  • PARI
    tabf(nn) = {p = x-2; print(Vec(p)); for (n=2, nn, p = -2 + p^2; print(Vec(p)););} \\ Michel Marcus, Mar 01 2016

Formula

P(n+1,x+2) = P(n,x^2) for n>=0.