cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159007 Numbers k such that k == 32 or 41 (mod 73).

Original entry on oeis.org

32, 41, 105, 114, 178, 187, 251, 260, 324, 333, 397, 406, 470, 479, 543, 552, 616, 625, 689, 698, 762, 771, 835, 844, 908, 917, 981, 990, 1054, 1063, 1127, 1136, 1200, 1209, 1273, 1282, 1346, 1355, 1419, 1428, 1492, 1501, 1565, 1574, 1638, 1647, 1711, 1720
Offset: 1

Views

Author

Vincenzo Librandi, Jun 30 2009

Keywords

Comments

Also, numbers k such that k^2 == 2 (mod 73).

Programs

  • Magma
    I:=[32, 41, 105]; [n le 3 select I[n] else Self(n-1)+Self(n-2)-Self(n-3): n in [1..60]]; // Vincenzo Librandi, Mar 02 2012
    
  • Mathematica
    LinearRecurrence[{1,1,-1},{32,41,105},60] (* Harvey P. Dale, Aug 09 2016 *)
  • PARI
    for(n=1, 50, print1((73+55*(-1)^(n-1)+146*(n-1))/4", ")); \\ Vincenzo Librandi, Mar 02 2012

Formula

a(n) = a(n-1) + a(n-2) - a(n-3) with a(1)=32, a(2)=41, a(3)=105.
a(n) = (73 + 55*(-1)^(n-1) + 146*(n-1))/4.
G.f.: x*(32 + 9*x + 32*x^2)/((1+x)*(x-1)^2). - R. J. Mathar, Jul 18 2009

Extensions

Sign of k in the definition clarified by R. J. Mathar, Jul 18 2009
New name from Charles R Greathouse IV, Jan 11 2012