A159007 Numbers k such that k == 32 or 41 (mod 73).
32, 41, 105, 114, 178, 187, 251, 260, 324, 333, 397, 406, 470, 479, 543, 552, 616, 625, 689, 698, 762, 771, 835, 844, 908, 917, 981, 990, 1054, 1063, 1127, 1136, 1200, 1209, 1273, 1282, 1346, 1355, 1419, 1428, 1492, 1501, 1565, 1574, 1638, 1647, 1711, 1720
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Magma
I:=[32, 41, 105]; [n le 3 select I[n] else Self(n-1)+Self(n-2)-Self(n-3): n in [1..60]]; // Vincenzo Librandi, Mar 02 2012
-
Mathematica
LinearRecurrence[{1,1,-1},{32,41,105},60] (* Harvey P. Dale, Aug 09 2016 *)
-
PARI
for(n=1, 50, print1((73+55*(-1)^(n-1)+146*(n-1))/4", ")); \\ Vincenzo Librandi, Mar 02 2012
Formula
a(n) = a(n-1) + a(n-2) - a(n-3) with a(1)=32, a(2)=41, a(3)=105.
a(n) = (73 + 55*(-1)^(n-1) + 146*(n-1))/4.
G.f.: x*(32 + 9*x + 32*x^2)/((1+x)*(x-1)^2). - R. J. Mathar, Jul 18 2009
Extensions
Sign of k in the definition clarified by R. J. Mathar, Jul 18 2009
New name from Charles R Greathouse IV, Jan 11 2012
Comments