cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A159019 Numerator of Hermite(n, 5/8).

Original entry on oeis.org

1, 5, -7, -355, -1103, 39925, 376105, -5785075, -113172895, 915114725, 37169367385, -106989875075, -13618566694895, -27008721445675, 5530280137847945, 39751307896902125, -2455777926682502975, -32631559276626402875, 1172785395732149604025
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Crossrefs

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(5/4)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 14 2018
  • Mathematica
    Numerator[Table[HermiteH[n,5/8],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 01 2011 *)
    Table[4^n*HermiteH[n, 5/8], {n,0,30}] (* G. C. Greubel, Jul 14 2018 *)
  • PARI
    a(n)=numerator(polhermite(n,5/8)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(5*x - 16*x^2))) \\ G. C. Greubel, Jul 14 2018
    

Formula

From G. C. Greubel, Jul 14 2018: (Start)
a(n) = 4^n * Hermite(n, 5/8).
E.g.f.: exp(5*x - 16*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(5/4)^(n-2*k)/(k!*(n-2*k)!)). (End)

A159028 Numerator of Hermite(n, 7/8).

Original entry on oeis.org

1, 7, 17, -329, -3935, 14567, 731569, 2324119, -147602623, -1628192825, 31112205649, 738807143543, -5779846383647, -324160867806041, 135290020954865, 146171098923790423, 958258482408197761, -68131793272123312249, -998215167334922767727
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Crossrefs

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(7/4)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 14 2018
  • Mathematica
    Numerator[Table[HermiteH[n,7/8],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 01 2011 *)
    Table[4^n*HermiteH[n, 7/8], {n,0,30}] (* G. C. Greubel, Jul 14 2018 *)
  • PARI
    a(n)=numerator(polhermite(n,7/8)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(7*x - 16*x^2))) \\ G. C. Greubel, Jul 14 2018
    

Formula

From G. C. Greubel, Jul 14 2018: (Start)
a(n) = 4^n * Hermite(n, 7/8).
E.g.f.: exp(7*x - 16*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(7/4)^(n-2*k)/(k!*(n-2*k)!)). (End)
Showing 1-2 of 2 results.