cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159046 Dimension of the space of newforms of weight 2 on the subgroup Gamma_1(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 1, 2, 5, 2, 7, 3, 5, 4, 12, 5, 12, 6, 13, 8, 22, 7, 26, 13, 19, 11, 25, 13, 40, 14, 29, 19, 51, 13, 57, 25, 39, 21, 70, 23, 69, 24, 55, 37, 92, 22, 79, 42, 71, 34, 117, 34, 126, 39, 87, 61, 117, 31, 155, 68, 109, 45, 176, 55, 187, 56, 119, 87
Offset: 1

Views

Author

Steven Finch, Apr 03 2009

Keywords

Examples

			a(p) = A029937(p) = (p-5)*(p-7)/24 for any prime p>3.
G.f. = x^11 + 2*x^13 + x^14 + x^15 + 2*x^16 + 5*x^17 + 2*x^18 + 7*x^19 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ DivisorSum[ n/j, MoebiusMu[#] MoebiusMu[n/j/#] &] If[ j < 5, 0, 1 + DivisorSum[ j, #^2 MoebiusMu[ j/#] / 24 - EulerPhi [#] EulerPhi[j/#] / 4 &]], {j, Divisors@n}]]; (* Michael Somos, May 10 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, j, sumdiv(n/j, k, moebius(k) * moebius(n/j/k)) * if( j<5, 0, 1 + sumdiv(j, k, k^2 * moebius(j/k) / 24 - eulerphi(k) * eulerphi(j/k) / 4))))}; /* Michael Somos, May 10 2015 */

Formula

a(n) = A029937(n) - sum a(m)*d(n/m), where the summation is over all divisors 1 < m < n of n and d is the divisor function.
Dirichlet convolution of A007247 and A029937. - Michael Somos, May 10 2015