A159082 Numbers whose squares added to 7! are prime.
13, 23, 29, 59, 61, 73, 97, 101, 103, 109, 121, 127, 149, 169, 187, 191, 199, 221, 227, 251, 257, 263, 277, 299, 307, 317, 319, 331, 341, 367, 373, 383, 389, 397, 403, 407, 409, 433, 449, 451, 461, 463, 467, 491, 493, 499, 517, 527, 529, 533, 551, 563, 571
Offset: 1
Examples
1) 7!+1=71^2, (7, 71) is the largest (of three) Brown pairs; Erdos conjectured that there are no others. 2) 7!+3^2=5049= 3^3 * 11 * 17, 7!+5^2=5065 = 5 * 1013, 7!+7^2=5089 = 7 * 727, 7!+9^2=5121 = 3^2 * 569, 7!+11^2=5161 = 13 * 397. 3) 7!+13^2=5209 prime, so a(1)=13.
References
- R. K. Guy, Unsolved Problems in Number Theory (2nd ed.) New York: Springer-Verlag, p. 193, 1994
- I. Niven, H. S. Zuckerman and H. L. Montgomery: An Introduction to the Theory of Numbers (5th ed.). Wiley Text Books, 1991
- David Wells, Prime Numbers: The Most Mysterious Figures in Math. John Wiley and Sons. 2005
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
With[{s = 7!}, Select[Range[600], PrimeQ[#^2 + s] &]] (* Harvey P. Dale, Jun 17 2015 *)
-
PARI
isok(n) = isprime(n^2+7!); \\ Michel Marcus, Jul 23 2013; corrected Jun 14 2022
Formula
7! + a(n)^2 = prime.
Extensions
Edited by N. J. A. Sloane, Apr 05 2009
Comments