A159257 Rank deficiency of the Lights Out problem of size n.
0, 0, 0, 4, 2, 0, 0, 0, 8, 0, 6, 0, 0, 4, 0, 8, 2, 0, 16, 0, 0, 0, 14, 4, 0, 0, 0, 0, 10, 20, 0, 20, 16, 4, 6, 0, 0, 0, 32, 0, 2, 0, 0, 4, 0, 0, 30, 0, 8, 8, 0, 0, 2, 4, 0, 0, 0, 0, 22, 0, 40, 24, 0, 28, 42, 0, 32, 0, 8, 0, 14, 0, 0, 4, 0, 0, 2, 0, 64, 0, 0, 0, 6, 12, 0, 0, 0, 0, 10, 0, 0, 20, 0, 4, 62, 0, 0, 20, 16, 0, 18, 0, 0, 4, 0, 0, 6, 0, 8, 0, 0, 0, 2, 4, 0, 0, 0, 8, 46, 0, 0, 0, 80, 4, 50, 56, 0, 56, 56, 0
Offset: 1
Keywords
Examples
For n=2, matrix is [1 1 1 0][1 1 0 1][1 0 1 1][0 1 1 1] which is of full rank.
References
- See A075462 for references.
Links
- William Boyles, Table of n, a(n) for n = 1..25000 (first 1000 terms by Max Alekseyev and Thomas Buchholz).
- Andries E. Brouwer, Lights Out and Button Madness Games [Gives theory and a(n) for n = 1..1000, Jun 19 2008]
- JeuxT45, Turn it red [Dead link]
- Martin Kreh, "Lights Out" and Variants, The American Mathematical Monthly 124:10 (2017), 937-950.
- Eric Weisstein's World of Mathematics, Lights Out Puzzle
Programs
-
Mathematica
Table[First[Dimensions[NullSpace[AdjacencyMatrix[GridGraph[{n, n}]] + IdentityMatrix[n*n],Modulus -> 2]]], {n, 2, 30}] (* Or Faster *) A[k_] := DiagonalMatrix[Array[1 &, k - 1], -1] + DiagonalMatrix[Array[1 &, k - 1], 1] + IdentityMatrix[k]; B[k_, 0] := IdentityMatrix[k]; B[k_, 1] := A[k]; B[k_, n_] := B[k, n] = Mod[A[k].B[k, n - 1] + B[k, n - 2], 2]; Table[First[Dimensions[NullSpace[B[n, n], Modulus -> 2]]], {n, 2, 30}] (* Birkas Gyorgy, Jun 10 2011 *)
-
PARI
{ A159257(n) = my(p,q,r); p=Mod(1,2); q=p*x;for(u=2,n,r=x*q+p;p=q;q=r); p=subst(q,x,1+x); r=gcd(p,q); poldegree(r) } \\ Zhao Hui Du, Mar 18 2014
-
PARI
{ A159257(n) = my(f = polchebyshev(n,2,x/2)*Mod(1,2)); poldegree( gcd(f,subst(f,x,1+x)) ); } \\ Max Alekseyev, Nov 12 2019
Formula
Let f(k,x) = U(k,x/2), where U(k,x) is the k-th Chebyshev polynomial of the second kind over the field GF(2). So f(0,x)=1, f(1,x)=x, f(2,x)=(1+x)^2, and f(n+1,x)=x*f(n,x)+f(n-1,x). Then a(n) equals the degree of gcd(f(n,x), f(n,1+x)). For example, f(5,x)=x^5+x=x(1+x)^4 and f(5, 1+x)=x^4(1+x). So their GCD is x(1+x) and the degree is 2, that is a(5)=2. - Zhao Hui Du, Mar 17 2014; edited by Max Alekseyev, Nov 12 2019
Extensions
More terms from Max Alekseyev, Sep 17 2009
More terms from Thomas Buchholz, May 16 2014
Comments