A159290 A generalized Jacobsthal sequence.
3, 5, 13, 25, 53, 105, 213, 425, 853, 1705, 3413, 6825, 13653, 27305, 54613, 109225, 218453, 436905, 873813, 1747625, 3495253, 6990505, 13981013, 27962025, 55924053, 111848105, 223696213, 447392425, 894784853, 1789569705, 3579139413
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Creighton Dement, Online Floretion Multiplier [broken link]
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2).
Programs
-
Magma
[-1 + (2*(-1)^n + 5*2^(n+1))/3: n in [0..50]]; // G. C. Greubel, Jun 27 2018
-
Mathematica
LinearRecurrence[{2, 1, -2}, {3, 5, 13}, 50] (* or *) Table[-1 + (2*(-1)^n + 5*2^(n+1))/3, {n,0,30}] (* G. C. Greubel, Jun 27 2018 *)
-
PARI
x='x+O('x^50); Vec((3-x)/(-x^2+1-2*x+2*x^3)) \\ G. C. Greubel, Jun 27 2018
Formula
a(n) = -1 + (2*(-1)^n + 5*2^(n+1))/3.
G.f.: (3-x)/((1-x)*(1+x)*(1-2*x)).
a(n)+a(n+1) = A051633(n+1). - R. J. Mathar, Mar 23 2023
Comments