cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159294 Number of ways that a 1 X n rectangular tile T, marked into n unit squares, can be surrounded by one layer of copies of itself laid in the plane grid generated by the units of T. Ways that differ by rotation or reflection are not counted as different. The surrounded tile is the exact surrounded region.

Original entry on oeis.org

1, 153, 301, 517, 825, 1234, 1774, 2454, 3310, 4351, 5619, 7123, 8911, 10992, 13420, 16204, 19404, 23029, 27145, 31761, 36949, 42718, 49146, 56242, 64090, 72699, 82159, 92479, 103755, 115996
Offset: 1

Views

Author

David Pasino, Apr 09 2009

Keywords

Crossrefs

Cf. A159295 for analogous problem for strip-of-hexagons tile.

Programs

  • Magma
    I:=[301, 517, 825, 1234, 1774, 2454, 3310]; [1, 153] cat [n le 7 select I[n] else 3*Self(n-1) -Self(n-2) -5*Self(n-3) +5*Self(n-4) + Self(n-5) -3*Self(n-6) +Self(n-7): n in [1..30]]; // G. C. Greubel, Jun 27 2018
  • Mathematica
    Join[{1, 153}, LinearRecurrence[{3, -1, -5, 5, 1, -3, 1}, {301, 517, 825, 1234, 1774, 2454, 3310}, 49]] (* G. C. Greubel, Jun 27 2018 *)
  • PARI
    x='x+O('x^30); Vec(-x*(63*x^7-173*x^6+15*x^5 +335*x^4 -228*x^3 - 157*x^2+150*x+1)/((x-1)^5*(x+1)^2)) \\ G. C. Greubel, Jun 27 2018
    

Formula

For n>1, a(n) = (1/16)*(n^4 + 30*n^3 + 246*n^2 + 476*n + 256 + (1 if n odd, 0 if n even)*(6*n + 9)).
G.f.: -x*(63*x^7-173*x^6+15*x^5+335*x^4-228*x^3-157*x^2+150*x+1) / ((x-1)^5*(x+1)^2). - Colin Barker, Nov 26 2012