cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A159295 Number of ways that a tile in the form of a strip of n congruent regular hexagons stuck together on successive parallel edges can be surrounded by one layer of copies of itself in a plane. Ways that differ by rotation or reflection are not counted as different. The surrounded tile is the exact surrounded region.

Original entry on oeis.org

1, 721, 1842, 4025, 7856, 14124, 23936, 38654, 60090, 90407, 132374, 189223, 264972, 364230, 492596, 656404, 863206, 1121449, 1441050, 1832997, 2310024, 2886128, 3577352, 4401210, 5377586, 6528059, 7876926, 9450419, 11277860
Offset: 1

Views

Author

David Pasino, Apr 09 2009

Keywords

Crossrefs

Cf. A159294 for analogous problem for strip-of-squares tile.

Programs

  • Magma
    I:=[1842,4025, 7856,14124,23936,38654,60090,90407,132374,189223]; [1,721] cat [n le 10 select I[n] else 4*Self(n-1) -3*Self(n-2) -8*Self(n-3) +14*Self(n-4) -14*Self(n-6) +8*Self(n-7) +3*Self(n-8) -4*Self(n-9) +Self(n-10): n in [1..30]]; // G. C. Greubel, Jun 27 2018
  • Mathematica
    Join[{1,721},LinearRecurrence[{4,-3,-8,14,0,-14,8,3,-4,1},{1842,4025, 7856,14124,23936,38654,60090,90407,132374,189223},30]] (* Harvey P. Dale, Dec 04 2014 *)
  • PARI
    x='x+O('x^30); Vec(x*(28*x^11 -285*x^10 +784*x^9 -307*x^8 -1866*x^7 +2566*x^6 +583*x^5 -3036*x^4 +1172*x^3 +1039*x^2 -717*x-1)/( (x-1)^7*(x+1)^3)) \\ G. C. Greubel, Jun 27 2018
    

Formula

a(1) = 1, a(2) = 721, and if n > 2 then a(n) = (1/144)*(n^6 + 30*n^5 + 463*n^4 + 3132*n^3 + 11506*n^2 + 10716*n - 1152 + (n odd)(9*n^2 + 90*n + 261)).
G.f.: x*(28*x^11 -285*x^10 +784*x^9 -307*x^8 -1866*x^7 +2566*x^6 +583*x^5 -3036*x^4 +1172*x^3 +1039*x^2 -717*x-1) / ((x-1)^7*(x+1)^3). - Colin Barker, Nov 26 2012

Extensions

Typo in formula corrected by David Pasino, Apr 15 2009
Showing 1-1 of 1 results.