A159295 Number of ways that a tile in the form of a strip of n congruent regular hexagons stuck together on successive parallel edges can be surrounded by one layer of copies of itself in a plane. Ways that differ by rotation or reflection are not counted as different. The surrounded tile is the exact surrounded region.
1, 721, 1842, 4025, 7856, 14124, 23936, 38654, 60090, 90407, 132374, 189223, 264972, 364230, 492596, 656404, 863206, 1121449, 1441050, 1832997, 2310024, 2886128, 3577352, 4401210, 5377586, 6528059, 7876926, 9450419, 11277860
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-3,-8,14,0,-14,8,3,-4,1).
Crossrefs
Cf. A159294 for analogous problem for strip-of-squares tile.
Programs
-
Magma
I:=[1842,4025, 7856,14124,23936,38654,60090,90407,132374,189223]; [1,721] cat [n le 10 select I[n] else 4*Self(n-1) -3*Self(n-2) -8*Self(n-3) +14*Self(n-4) -14*Self(n-6) +8*Self(n-7) +3*Self(n-8) -4*Self(n-9) +Self(n-10): n in [1..30]]; // G. C. Greubel, Jun 27 2018
-
Mathematica
Join[{1,721},LinearRecurrence[{4,-3,-8,14,0,-14,8,3,-4,1},{1842,4025, 7856,14124,23936,38654,60090,90407,132374,189223},30]] (* Harvey P. Dale, Dec 04 2014 *)
-
PARI
x='x+O('x^30); Vec(x*(28*x^11 -285*x^10 +784*x^9 -307*x^8 -1866*x^7 +2566*x^6 +583*x^5 -3036*x^4 +1172*x^3 +1039*x^2 -717*x-1)/( (x-1)^7*(x+1)^3)) \\ G. C. Greubel, Jun 27 2018
Formula
a(1) = 1, a(2) = 721, and if n > 2 then a(n) = (1/144)*(n^6 + 30*n^5 + 463*n^4 + 3132*n^3 + 11506*n^2 + 10716*n - 1152 + (n odd)(9*n^2 + 90*n + 261)).
G.f.: x*(28*x^11 -285*x^10 +784*x^9 -307*x^8 -1866*x^7 +2566*x^6 +583*x^5 -3036*x^4 +1172*x^3 +1039*x^2 -717*x-1) / ((x-1)^7*(x+1)^3). - Colin Barker, Nov 26 2012
Extensions
Typo in formula corrected by David Pasino, Apr 15 2009