A159329 Transform of the finite sequence (1, 0, -1) by the T_{1,1} transformation (see link).
2, 4, 9, 23, 54, 125, 290, 674, 1567, 3643, 8469, 19688, 45769, 106400, 247350, 575019, 1336757, 3107583, 7224254, 16794353, 39042134, 90761950, 210995935, 490506039, 1140288197, 2650848448, 6162474989, 14326016268, 33303947274
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Richard Choulet Curtz-like transformation
- Index entries for linear recurrences with constant coefficients, signature (3,-2,1).
Crossrefs
Cf. A159328.
Programs
-
Magma
I:=[9, 23, 54]; [2,4] cat [n le 3 select I[n] else 3*Self(n-1) - 2*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Jun 26 2018
-
Mathematica
Join[{2,4}, LinearRecurrence[{3, -2, 1}, {9, 23, 54}, 50]] (* G. C. Greubel, Jun 26 2018 *)
-
PARI
x='x+O('x^30); Vec(2+4*x -x^2*(9-4*x+3*x^2)/(-1+3*x-2*x^2+x^3)) \\ G. C. Greubel, Jun 26 2018
Formula
O.g.f.: 2+4*x -x^2*(9-4*x+3*x^2) / ( -1+3*x-2*x^2+x^3 ).
a(0)=2, a(1)=4, a(2)=9, a(3)=23, a(4)=54 and for n>=2 a(n+3)=3*a(n+2)-2*a(n+1)+a(n).