cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159331 Transform of the finite sequence (1, 0, -1, 0, 1, 0, -1) by the T_{1,1} transform (see link).

Original entry on oeis.org

2, 4, 9, 23, 55, 126, 293, 680, 1581, 3676, 8546, 19867, 46185, 107367, 249598, 580245, 1348906, 3135826, 7289911, 16946987, 39396965, 91586832, 212913553, 494963960, 1150651606, 2674940451, 6218482101, 14456217007, 33606627270
Offset: 0

Views

Author

Richard Choulet, Apr 10 2009

Keywords

Crossrefs

Programs

  • Magma
    I:=[293, 680, 1581]; [2, 4, 9, 23, 55, 126] cat [n le 3 select I[n] else 3*Self(n-1) - 2*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Jun 26 2018
  • Mathematica
    Join[{2, 4, 9, 23, 55, 126}, LinearRecurrence[{3, -2, 1}, {293, 680, 1581}, 45]] (* G. C. Greubel, Jun 26 2018 *)
  • PARI
    z='z+O('z^30); Vec(((1-z)^2/(1-3*z+2*z^2-z^3))*(1-z^2+z^4+z^6) + (z/(1-3*z+2*z^2-z^3)) + ((1-z+z^2)/(1-3*z+2*z^2-z^3))) \\ G. C. Greubel, Jun 26 2018
    

Formula

O.g.f.: f(z) = ((1-z)^2/(1-3*z+2*z^2-z^3))*(1-z^2+z^4+z^6) + (z/(1-3*z+2*z^2-z^3)) + ((1-z+z^2)/(1-3*z+2*z^2-z^3)).
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) for n >= 9, with a(0)=2, a(1)=4, a(2)=9, a(3)=23, a(4)=55, a(5)=126, a(6)=293, a(7)=680, a(8)=1581.