A159334 Transform of A056594 by the T_{1,1} transformation (see link).
2, 4, 9, 23, 55, 126, 291, 678, 1578, 3667, 8523, 19815, 46066, 107089, 248950, 578740, 1345409, 3127695, 7271007, 16903042, 39294807, 91349342, 212361454, 493680487, 1147667895, 2668004163, 6202357186, 14418731129, 33519483178
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- R. Choulet, Curtz-like transformation
- Index entries for linear recurrences with constant coefficients, signature (3,-3,4,-2,1).
Programs
-
Magma
I:=[291, 678, 1578, 3667, 8523]; [2, 4, 9, 23, 55, 126] cat [n le 5 select I[n] else 3*Self(n-1) - 3*Self(n-2) + 4*Self(n-3) -2*Self(n-4) +Self(n-5): n in [1..50]]; // G. C. Greubel, Jun 25 2018
-
Mathematica
Join[{2, 4, 9, 23, 55, 126}, LinearRecurrence[{3, -3, 4, -2, 1}, {291, 678, 1578, 3667, 8523}, 45]] (* G. C. Greubel, Jun 25 2018 *)
-
PARI
x='x+O('x^50); Vec(-(2-2*x+3*x^2+x^4)/((x^2+1)*(x^3-2*x^2+3*x-1))) \\ G. C. Greubel, Jun 25 2018
Formula
O.g.f.: -(2-2*x+3*x^2+x^4)/((x^2+1)*(x^3-2*x^2+3*x-1)).
for n>=0 a(n+5)=3*a(n+4)-3*a(n+3)+4*a(n+2)-2*a(n+1)+a(n)