A159335 Triangle read by rows: numerator of n/binomial(n,m).
0, 1, 1, 2, 1, 2, 3, 1, 1, 3, 4, 1, 2, 1, 4, 5, 1, 1, 1, 1, 5, 6, 1, 2, 3, 2, 1, 6, 7, 1, 1, 1, 1, 1, 1, 7, 8, 1, 2, 1, 4, 1, 2, 1, 8, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 10, 1, 2, 1, 1, 5, 1, 1, 2, 1, 10, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 12, 1, 2, 3, 4, 1, 1, 1, 4, 3, 2, 1, 12, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13
Offset: 0
Examples
Row 10 of Pascal's triangle is: 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1. {a(10,m)} of this sequence (A159335) is: 10, 1, 2, 1, 1, 5, 1, 1, 2, 1,10. Multiplying the corresponding integers, we get multiples of 10: 1*10=10,10*1=10, 45*2=90, 120*1=120, 210*1=210, 252*5=1260, 210*1=210, 120*1=120, 45*2=90, 10*1=10, 1*10=10.
Links
- G. C. Greubel, Rows n=0..100 of triangle, flattened
Programs
-
Magma
/* As triangle */ [[n/GCD(n,Binomial(n, k)): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jun 25 2018
-
Mathematica
Table[n/GCD[n, Binomial[n, k]], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Jun 25 2018 *)
-
PARI
for(n=0, 10, for(k=0,n, print1(n/gcd(n, binomial(n,k)), ", "))) \\ G. C. Greubel, Jun 25 2018
Formula
T(n,m) = n/gcd(n,binomial(n,m)).
Extensions
Extended by Ray Chandler, Jun 19 2009
Edited by Franklin T. Adams-Watters, Sep 24 2009
Comments