cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159335 Triangle read by rows: numerator of n/binomial(n,m).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 3, 1, 1, 3, 4, 1, 2, 1, 4, 5, 1, 1, 1, 1, 5, 6, 1, 2, 3, 2, 1, 6, 7, 1, 1, 1, 1, 1, 1, 7, 8, 1, 2, 1, 4, 1, 2, 1, 8, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 10, 1, 2, 1, 1, 5, 1, 1, 2, 1, 10, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 12, 1, 2, 3, 4, 1, 1, 1, 4, 3, 2, 1, 12, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13
Offset: 0

Views

Author

Leroy Quet, Apr 10 2009

Keywords

Comments

This triangle first differs from A109004 (read as a triangle) at T(10, 4) and T(10,6).
T(n,m) is the smallest positive integer such that binomial(n,m)*T(n,m) is a multiple of n.

Examples

			Row 10 of Pascal's triangle is: 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1. {a(10,m)} of this sequence (A159335) is: 10, 1, 2, 1, 1, 5, 1, 1, 2, 1,10. Multiplying the corresponding integers, we get multiples of 10: 1*10=10,10*1=10, 45*2=90, 120*1=120, 210*1=210, 252*5=1260, 210*1=210, 120*1=120, 45*2=90, 10*1=10, 1*10=10.
		

Crossrefs

Cf. A165661 (denominators), A007318, A020475, A109004.

Programs

  • Magma
    /* As triangle */ [[n/GCD(n,Binomial(n, k)): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jun 25 2018
  • Mathematica
    Table[n/GCD[n, Binomial[n, k]], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Jun 25 2018 *)
  • PARI
    for(n=0, 10, for(k=0,n, print1(n/gcd(n, binomial(n,k)), ", "))) \\ G. C. Greubel, Jun 25 2018
    

Formula

T(n,m) = n/gcd(n,binomial(n,m)).

Extensions

Extended by Ray Chandler, Jun 19 2009
Edited by Franklin T. Adams-Watters, Sep 24 2009