A159339 Transform of A056594 by the T_{1,0} transformation (see link).
1, 2, 4, 11, 27, 61, 140, 327, 762, 1770, 4113, 9563, 22233, 51684, 120149, 279314, 649328, 1509503, 3509167, 8157825, 18964644, 44087447, 102490878, 238262386, 553892849, 1287644651, 2993410641, 6958835472, 16177329785, 37607729050
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Richard Choulet, Curtz-like transformation.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,4,-2,1).
Programs
-
Magma
I:=[1, 2, 4, 11, 27]; [n le 5 select I[n] else 3*Self(n-1) - 3*Self(n-2) + 4*Self(n-3) -2*Self(n-4) +Self(n-5): n in [1..50]]; // G. C. Greubel, Jun 25 2018
-
Maple
a(0):=1: a(1):=2:a(2):=4: a(3):=11:a(4):=27:for n from 0 to 31 do a(n+5):=3*a(n+4)-3*a(n+3)+4*a(n+2)-2*a(n+1)+a(n):od:seq(a(i),i=0..31);
-
Mathematica
LinearRecurrence[{3, -3, 4, -2, 1}, {1, 2, 4, 11, 27}, 50] (* G. C. Greubel, Jun 25 2018 *)
-
PARI
z='z+O('z^50); Vec(((1-z)^2/(1-3*z+2*z^2-z^3))*(1/(1+z^2))+(z/(1-3*z+2*z^2-z^3))) \\ G. C. Greubel, Jun 25 2018
Formula
O.g.f.: f(z) = ((1-z)^2/(1-3*z+2*z^2-z^3))*(1/(1+z^2))+(z/(1-3*z+2*z^2-z^3)).
a(n) = 3*a(n-1) - 3*a(n-2) + 4*a(n-3) - 2*a(n-4) + a(n-5) for n >= 5, with a(0)=1, a(1)=2, a(2)=4, a(3)=11, a(4)=27.