A159344 Number of Hamiltonian cycles in the n-hypercube up to automorphism.
1, 1, 1, 9, 237675, 777739016577752714
Offset: 1
Examples
There are six Hamiltonian cycles in the cube, but they are isomorphic so a(3) = 1.
Links
- H. L. Abbott, Hamiltonian circuits and paths on the n-cube, Canad. Math. Bull., 9 (1966), pp. 557-562.
- Yury Chebiryak and Daniel Kroening, Towards a classification of Hamiltonian cycles in the 6-cube, Journal on Satisfiability, Boolean Modeling and Computation 4 (2008) pp. 57-74.
- I. J. Dejter and A. A. Delgado, Classes of Hamiltonian cycles in the 5-cube, J. Combinat. Math, Combinat. Comput, 61 (2007), pp. 81-95.
- R. J. Douglas, Bounds on the number of Hamiltonian circuits in the n-cube, Discrete Mathematics, 17 (1977), 143-146.
- E. N. Gilbert, Gray codes and paths on the n-cube, Bell Syst. Tech. J. 37 (1958), pp. 815-826.
- Harri Haanpaa and Patric R. J. Östergård, Counting Hamiltonian cycles in bipartite graphs, Math. Comp., 83 (2014), 979-995.
- Frank Ruskey, Combinatorial Generation (2003), see ch. 6.7.
- D. H. Smith, Hamiltonian circuits on the n-cube, Canadian Mathematical Bulletin 17 (1975), pp. 759-761.
Formula
Extensions
a(6) from Haanpaa & Ostergard 2012. - N. J. A. Sloane, Sep 06 2012
Edited by N. J. A. Sloane, Dec 16 2012
Comments