cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A159350 Transform of A056594 by the T_{0,0} transformation (see link).

Original entry on oeis.org

1, 1, 1, 4, 11, 24, 54, 127, 297, 689, 1600, 3721, 8652, 20112, 46753, 108689, 252673, 587392, 1365519, 3174448, 7379698, 17155715, 39882197, 92714861, 215535904, 501060185, 1164823608, 2707886360, 6295072049, 14634267033, 34020543361
Offset: 0

Views

Author

Richard Choulet, Apr 11 2009

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,1,1,4,11]; [n le 5 select I[n] else 3*Self(n-1) - 3*Self(n-2) +4*Self(n-3) -2*Self(n-4) + Self(n-5): n in [1..50]]; // G. C. Greubel, Jun 15 2018
  • Maple
    a(0):=1: a(1):=1: a(2):=1: a(3):=4: a(4):=11: for n from 0 to 31 do a(n+5):=3*a(n+4)-3*a(n+3)+4*a(n+2)-2*a(n+1)+a(n): od: seq(a(i),i=0..31);
  • Mathematica
    LinearRecurrence[{3,-3,4,-2,1}, {1,1,1,4,11}, 50] (* G. C. Greubel, Jun 15 2018 *)
  • PARI
    x='x+O('x^50); Vec((1-x)^2/((1-3*x+2*x^2-x^3)*(1+x^2))) \\ G. C. Greubel, Jun 15 2018
    

Formula

O.g.f.: (1-z)^2/((1-3*z+2*z^2-z^3)*(1+z^2)).
a(n) = 3*a(n-1) - 3*a(n-2) + 4*a(n-3) - 2*a(n-4) + a(n-5) for n >= 5, with a(0)=1, a(1)=1, a(2)=1, a(3)=4, a(4)=11.
Showing 1-1 of 1 results.