A159492 Numerator of Hermite(n, 2/13).
1, 4, -322, -3992, 310540, 6639344, -498255224, -15457610528, 1117041417872, 46265544539200, -3212977815009824, -169229451802535296, 11268933708996384448, 731470391347068698368, -46589813151941838471040, -3647677144462096434561536, 221619644102496735309926656
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..422
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(4/13)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 12 2018
-
Mathematica
Numerator[Table[HermiteH[n,2/13],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2011 *)
-
PARI
a(n)=numerator(polhermite(n,2/13)) \\ Charles R Greathouse IV, Jan 29 2016
Formula
From G. C. Greubel, Jun 12 2018: (Start)
a(n) = 13^n * Hermite(n, 2/13).
E.g.f.: exp(4*x-169*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(4/13)^(n-2*k)/(k!*(n-2*k)!)). (End)