A159536 Numerator of Hermite(n, 8/17).
1, 16, -322, -23648, 179980, 57553856, 400719496, -193185260672, -4712275251568, 817892241322240, 37599531719812576, -4125824647325545984, -305071017031777093952, 23735583481341553441792, 2672072957678237939024000, -149315174208164043426596864
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..404
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(16/17)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 09 2018
-
Mathematica
Numerator[Table[HermiteH[n,8/17],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2011 *) Table[17^n*HermiteH[n, 8/17], {n,0,30}] (* G. C. Greubel, Jul 09 2018 *)
-
PARI
a(n)=numerator(polhermite(n,8/17)) \\ Charles R Greathouse IV, Jan 29 2016
Formula
From G. C. Greubel, Jul 09 2018: (Start)
a(n) = 17^n * Hermite(n, 8/17).
E.g.f.: exp(16*x-289*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(16/17)^(n-2*k)/(k!*(n-2*k)!)). (End)