cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A159539 Numerator of Hermite(n, 11/17).

Original entry on oeis.org

1, 22, -94, -27500, -442004, 53855912, 2462221624, -132603427088, -12879424086640, 329810916948832, 74254604271575584, -272705805989586112, -478110301690448457536, -8626939166846096792960, 3402728145231415580480384, 144669210933209758019200768
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Crossrefs

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(22/17)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 02 2018
  • Mathematica
    Numerator[Table[HermiteH[n,11/17],{n,0,30}]] (* Vladimir Joseph Stephan Orlovsky, May 08 2011 *)
    Table[17^n*HermiteH[n, 11/17], {n,0,50}] (* G. C. Greubel, Jul 02 2018 *)
  • PARI
    a(n)=numerator(polhermite(n,11/17)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

From G. C. Greubel, Jul 02 2018: (Start)
a(n) = 17^n * Hermite(n, 11/17).
E.g.f.: exp(22*x-289*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(22/17)^(n-2*k)/(k!*(n-2*k)!)). (End)

A159540 Numerator of Hermite(n, 12/17).

Original entry on oeis.org

1, 24, -2, -27792, -663540, 48330144, 3077554056, -93747642048, -14701727119728, 80647645956480, 78413927979780576, 1415790877886279424, -464576773026174196032, -20969768081647414789632, 2987555438559134954033280, 241388693842110119374500864
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Crossrefs

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(24/17)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 02 2018
  • Mathematica
    Numerator[Table[HermiteH[n,12/17],{n,0,30}]] (* Vladimir Joseph Stephan Orlovsky, May 08 2011 *)
    Table[17^n*HermiteH[n, 12/17], {n,0,50}] (* G. C. Greubel, Jul 02 2018 *)
  • PARI
    a(n)=numerator(polhermite(n,12/17)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

From G. C. Greubel, Jul 02 2018: (Start)
a(n) = 17^n * Hermite(n, 12/17).
E.g.f.: exp(24*x-289*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(24/17)^(n-2*k)/(k!*(n-2*k)!)). (End)
Showing 1-2 of 2 results.